Defect Engineering and High‐Entropy Strategies for Enhanced Energy Storage and Thermal Response in Ferroelectric Ceramics

作者
Xiangfu Zeng,Jie Shen,Jinfeng Lin,Qifa Lin,Liang Cao,Li Fu,Luomeng Tang,Simin Wang,Min Gao,Chunlin Zhao,Laihui Luo,Baisheng Sa,Cong Lin,Xiao Wu,Shan‐Tao Zhang,Jiwei Zhai
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202522003
摘要

Abstract Stable and efficient thermal runaway pulse alarm systems are critical for safeguarding personnel in high‐risk operations. High‐entropy ceramic capacitors (HECCs) exhibit exceptional discharge power and thermal stability, making them promising candidates for such applications. However, the inevitable increase in polarization hysteresis caused by defect dipoles, which originates from increased entropy and structural disorder that deteriorates the ferroelectricity of the system, has posed significant limitations on the development of HECCs. Here, BaTiO 3 ‐based high‐entropy systems coexisting with polymorphic relaxor phases and octahedral tilts are designed based on an electrical neutral strategy and first‐principles calculations. The optimized high‐entropy ceramics are fabricated via a sequential process involving tape‐casting, isostatic pressing, and oxygen annealing. This approach effectively eliminates internal defects while achieving a high recyclable energy storage density of 10.63 J cm −3 and an energy storage efficiency of 90.11% at 770 kV cm −1 . Additionally, the anomalous fluorescence thermal enhancement effect of the ceramics is explored for its potential in real‐time temperature sensing. By highlighting the application of the HECCs in uncontrolled temperature pulse alarms within high‐risk environments, the limitations of conventional ceramics (e.g., inadequate energy supply and susceptibility to thermal runaway) will be addressed, thereby offering an effective strategy for high‐performance energy storage ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的绿草完成签到,获得积分10
1秒前
2秒前
rosestar完成签到,获得积分10
4秒前
4秒前
xsq完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
绕着地球逛完成签到,获得积分10
5秒前
科研通AI6.1应助ryt采纳,获得10
5秒前
6秒前
cuber完成签到 ,获得积分10
6秒前
7秒前
云舒完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
pcg发布了新的文献求助10
8秒前
8秒前
9秒前
华仔应助凌爽采纳,获得10
10秒前
11秒前
11秒前
11秒前
小鱼发布了新的文献求助10
12秒前
13秒前
称心的绿柏完成签到,获得积分10
13秒前
14秒前
Elena发布了新的文献求助10
15秒前
小二郎应助有魅力的桐采纳,获得10
16秒前
阿哈哈哈发布了新的文献求助10
16秒前
慕言完成签到 ,获得积分10
16秒前
123发布了新的文献求助10
17秒前
18秒前
18秒前
jojoly应助LIZ采纳,获得10
18秒前
mi完成签到,获得积分10
19秒前
小泉发布了新的文献求助30
19秒前
慕青应助执着的导师采纳,获得10
20秒前
G18960关注了科研通微信公众号
20秒前
20秒前
悦耳安白发布了新的文献求助10
20秒前
21秒前
桐桐应助薀九采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778188
求助须知:如何正确求助?哪些是违规求助? 5639026
关于积分的说明 15448263
捐赠科研通 4910052
什么是DOI,文献DOI怎么找? 2642147
邀请新用户注册赠送积分活动 1590080
关于科研通互助平台的介绍 1544494