AD-UNet: A Multi-Attention Mechanism Densely Connected U-Net for Liver Tumor Segmentation

机制(生物学) 网(多面体) 分割 计算机科学 人工智能 业务 数学 物理 几何学 量子力学
作者
Zhe Chen,Jijun Tong,Nan Jiang,Zheyi Pan
标识
DOI:10.2139/ssrn.4385949
摘要

As an important metabolic organ in human body, liver is also one of the most common sites for tumors. Since liver tumors are mostly malignant tumors, early screening of tumors is extremely crucial. To this end, liver tumor segmentation has contributed to improve the efficiency of liver cancer treatment and lowered the risk of human death. Traditionally, cancer diagnosis relies on manual judgment by physicians according to patients’ Computed Tomography (CT) images, which is inefficient and labor-intensive. On the other hand, since liver tumors are complex in distribution and varying in shape and size, neither traditional morphological image processing algorithms nor existing deep learning methods which suffer from inadequate feature extraction can extract liver tumor in a precise way. In this paper, we propose a multi-attention mechanism densely connected U-Net, AD-UNet, which combines dense connectivity and attention mechanism to strengthen the mapping of features and enhance the effective features. According to the experimental results, AD-UNet achieved very competitive result compared to other method. Efficacy of AD-UNet was demonstrated using the public dataset of Liver Tumor Segmentation (LiTS) Challenge 2017 and the 3D-IRCADb dataset. For liver tumor segmentation, AD-UNet achieved Dice of 85.4%, VOE of 22.9%, RVD of 16.9%, ASD of 0.927mm and MSD of 3.546mm with LiTS. And in the 3D-IRCADb dataset we obtained Dice of 67.27%, VOE of 37.63%, RVD of -0.82%, ASD of 1.427mm and MSD of 7.316mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjm发布了新的文献求助10
2秒前
慧1111111发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
orixero应助rsy采纳,获得10
4秒前
顾矜应助jjy采纳,获得10
4秒前
泛泛完成签到,获得积分10
6秒前
科研通AI6应助hyx采纳,获得10
6秒前
思源应助gjm采纳,获得10
11秒前
11秒前
Ruby0130完成签到,获得积分10
11秒前
13秒前
15秒前
16秒前
是小小李哇完成签到 ,获得积分10
17秒前
17秒前
在水一方应助韩梦采纳,获得10
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
小云完成签到,获得积分10
20秒前
flywee发布了新的文献求助10
20秒前
自然完成签到,获得积分10
21秒前
Zhanghongjun发布了新的文献求助30
22秒前
23秒前
24秒前
大力元霜完成签到,获得积分10
25秒前
亲亲小凡完成签到,获得积分10
25秒前
杏林靴子完成签到,获得积分10
26秒前
明亮的如冬完成签到,获得积分10
26秒前
Doubility发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
X丶2X4发布了新的文献求助10
27秒前
28秒前
ahsisalah完成签到,获得积分10
28秒前
光亮初瑶发布了新的文献求助10
29秒前
Jasper应助DrLin采纳,获得10
30秒前
初末完成签到,获得积分10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202356
求助须知:如何正确求助?哪些是违规求助? 3737087
关于积分的说明 11767333
捐赠科研通 3409467
什么是DOI,文献DOI怎么找? 1870628
邀请新用户注册赠送积分活动 926211
科研通“疑难数据库(出版商)”最低求助积分说明 836470