The impact of positive and negative information on SIR-like epidemics in delayed multiplex networks

流行病模型 马尔可夫链 计算机科学 传输(电信) 阈值模型 传染病(医学专业) 互联网 计量经济学 环境卫生 电信 医学 疾病 数学 万维网 机器学习 病理 人口
作者
Xifen Wu,Haibo Bao
出处
期刊:Chaos [American Institute of Physics]
卷期号:32 (11) 被引量:9
标识
DOI:10.1063/5.0126799
摘要

In order to better study the interaction between epidemic propagation and information diffusion, a new coupling model on multiplex networks with time delay is put forward in this paper. One layer represents the information diffusion about epidemics. There is not only information about the positive prevention of infectious diseases but also negative preventive information. Meanwhile, the dissemination of information at this layer will be influenced by the mass media, which can convey positive and reliable preventive measures to help the public avoid exposure to contagion. The other layer represents the transmission of infectious diseases, and the public in this layer no longer only exchange information related to infectious diseases in the virtual social network like the information layer but spread infectious diseases through contact among people. The classical SIR model is used to model for epidemic propagation. Since each infected individual needs to spend enough time to recover, the infected one at one time does not necessarily change to the recovered one at the next time, so time delay is an essential factor to be considered in the model. Based on the microscopic Markov chain approach, this paper obtains an explicit expression for epidemic threshold in the two-layered multiplex networks with time delay, which reveals some main factors affecting epidemic threshold. In particular, the time delay has a noticeable effect on the epidemic threshold to some extent. Finally, the influence of these main factors on the epidemic threshold and their interaction are proved through numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
6秒前
艺术家发布了新的文献求助10
6秒前
liyi完成签到,获得积分10
7秒前
achaia发布了新的文献求助10
8秒前
8秒前
萧布发布了新的文献求助10
10秒前
10秒前
10秒前
咕噜完成签到 ,获得积分10
11秒前
逝水完成签到 ,获得积分10
13秒前
LiaoKaijian发布了新的文献求助10
13秒前
上官若男应助kuny采纳,获得10
17秒前
缓慢又蓝发布了新的文献求助20
17秒前
居单在此完成签到,获得积分10
20秒前
桃花岛岛主完成签到,获得积分10
22秒前
23秒前
23秒前
25秒前
25秒前
26秒前
李颖雪发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
良辰发布了新的文献求助10
29秒前
mymEN完成签到 ,获得积分10
30秒前
32秒前
kuny发布了新的文献求助10
32秒前
科研通AI5应助张泽崇采纳,获得10
33秒前
33秒前
乐怡日尧发布了新的文献求助10
34秒前
安安放完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844