Nanostructured‐Based Optical Readouts Interfaced with Machine Learning for Identification of Extracellular Vesicles

纳米技术 细胞外小泡 计算机科学 鉴定(生物学) 材料科学 生物 细胞生物学 植物
作者
Carolina del Real Mata,Olivia Jeanne,Mahsa Jalali,Yao Lü,Sara Mahshid
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:12 (5) 被引量:18
标识
DOI:10.1002/adhm.202202123
摘要

Extracellular vesicles (EVs) are shed from cancer cells into body fluids, enclosing molecular information about the underlying disease with the potential for being the target cancer biomarker in emerging diagnosis approaches such as liquid biopsy. Still, the study of EVs presents major challenges due to their heterogeneity, complexity, and scarcity. Recently, liquid biopsy platforms have allowed the study of tumor-derived materials, holding great promise for early-stage diagnosis and monitoring of cancer when interfaced with novel adaptations of optical readouts and advanced machine learning analysis. Here, recent advances in labeled and label-free optical techniques such as fluorescence, plasmonic, and chromogenic-based systems interfaced with nanostructured sensors like nanoparticles, nanoholes, and nanowires, and diverse machine learning analyses are reviewed. The adaptability of the different optical methods discussed is compared and insights are provided into prospective avenues for the translation of the technological approaches for cancer diagnosis. It is discussed that the inherent augmented properties of nanostructures enhance the sensitivity of the detection of EVs. It is concluded by reviewing recent integrations of nanostructured-based optical readouts with diverse machine learning models as novel analysis ventures that can potentially increase the capability of the methods to the point of translation into diagnostic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
辛勤的蚂蚁完成签到,获得积分10
1秒前
王灿章完成签到,获得积分10
2秒前
zk001完成签到,获得积分10
2秒前
宫野珏发布了新的文献求助10
2秒前
Clalalalala发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
烟花应助独特的凡儿采纳,获得10
3秒前
张思铭完成签到,获得积分10
4秒前
布丁发布了新的文献求助10
4秒前
NexusExplorer应助123456采纳,获得10
4秒前
present发布了新的文献求助10
4秒前
4秒前
5秒前
233gaoyuan发布了新的文献求助10
5秒前
5秒前
陈2发布了新的文献求助30
5秒前
5秒前
5秒前
hdh完成签到,获得积分10
6秒前
6秒前
JamesPei应助萤火采纳,获得10
7秒前
如风发布了新的文献求助10
7秒前
哎呀发布了新的文献求助10
7秒前
ED应助北冥鱼采纳,获得10
7秒前
8秒前
小滨完成签到 ,获得积分20
8秒前
於成协完成签到,获得积分10
8秒前
8秒前
852应助h7nho采纳,获得30
8秒前
乐乐应助过过过采纳,获得30
9秒前
玄月完成签到,获得积分10
10秒前
10秒前
11秒前
nanaliuyun给nanaliuyun的求助进行了留言
11秒前
lay发布了新的文献求助10
11秒前
最爱吃火锅发布了新的文献求助100
12秒前
任r发布了新的文献求助10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102243
求助须知:如何正确求助?哪些是违规求助? 3639813
关于积分的说明 11534648
捐赠科研通 3348817
什么是DOI,文献DOI怎么找? 1840125
邀请新用户注册赠送积分活动 907217
科研通“疑难数据库(出版商)”最低求助积分说明 824411