生物信息学
计算机科学
灵活性(工程)
等变映射
组合化学
数学
化学
生物化学
基因
统计
纯数学
作者
Arne Schneuing,Yuanqi Du,Charles B. Harris,Arian R. Jamasb,Ilia Igashov,Weitao Du,Tom L. Blundell,Píetro Lió,Carla P. Gomes,Max Welling,Michael M. Bronstein,Bruno E. Correia
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:65
标识
DOI:10.48550/arxiv.2210.13695
摘要
Structure-based drug design (SBDD) aims to design small-molecule ligands that bind with high affinity and specificity to pre-determined protein targets. In this paper, we formulate SBDD as a 3D-conditional generation problem and present DiffSBDD, an SE(3)-equivariant 3D-conditional diffusion model that generates novel ligands conditioned on protein pockets. Comprehensive in silico experiments demonstrate the efficiency and effectiveness of DiffSBDD in generating novel and diverse drug-like ligands with competitive docking scores. We further explore the flexibility of the diffusion framework for a broader range of tasks in drug design campaigns, such as off-the-shelf property optimization and partial molecular design with inpainting.
科研通智能强力驱动
Strongly Powered by AbleSci AI