Deep learning for predicting rate-induced tipping

引爆点(物理) 心理学 工程类 电气工程
作者
Yu Huang,Sebastian Bathiany,Peter Ashwin,Niklas Boers
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
被引量:1
标识
DOI:10.1038/s42256-024-00937-0
摘要

Abstract Nonlinear dynamical systems exposed to changing forcing values can exhibit catastrophic transitions between distinct states. The phenomenon of critical slowing down can help anticipate such transitions if caused by a bifurcation and if the change in forcing is slow compared with the system’s internal timescale. However, in many real-world situations, these assumptions are not met and transitions can be triggered because the forcing exceeds a critical rate. For instance, the rapid pace of anthropogenic climate change compared with the internal timescales of key Earth system components, like polar ice sheets or the Atlantic Meridional Overturning Circulation, poses significant risk of rate-induced tipping. Moreover, random perturbations may cause some trajectories to cross an unstable boundary whereas others do not—even under the same forcing. Critical-slowing-down-based indicators generally cannot distinguish these cases of noise-induced tipping from no tipping. This severely limits our ability to assess the tipping risks and to predict individual trajectories. To address this, we make the first attempt to develop a deep learning framework predicting the transition probabilities of dynamical systems ahead of rate-induced transitions. Our method issues early warnings, as demonstrated on three prototypical systems for rate-induced tipping subjected to time-varying equilibrium drift and noise perturbations. Exploiting explainable artificial intelligence methods, our framework captures the fingerprints for the early detection of rate-induced tipping, even with long lead times. Our findings demonstrate the predictability of rate-induced and noise-induced tipping, advancing our ability to determine safe operating spaces for a broader class of dynamical systems than possible so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨摩耶发布了新的文献求助10
3秒前
HEIKU应助wuhao0118采纳,获得10
3秒前
地学韦丰吉司长完成签到,获得积分10
4秒前
xo发布了新的文献求助10
4秒前
TTYYI关注了科研通微信公众号
5秒前
7秒前
11秒前
QIN发布了新的文献求助10
14秒前
幻心完成签到,获得积分10
21秒前
21秒前
Sewerant完成签到 ,获得积分10
26秒前
32秒前
36秒前
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得30
36秒前
Ava应助科研通管家采纳,获得10
37秒前
在水一方应助科研通管家采纳,获得10
37秒前
深情安青应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得30
37秒前
NexusExplorer应助科研通管家采纳,获得10
37秒前
科研应助科研通管家采纳,获得10
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
37秒前
萨摩耶完成签到 ,获得积分10
37秒前
研友_VZG7GZ应助小元采纳,获得10
38秒前
荒野求生的青椒完成签到,获得积分10
39秒前
流沙无言发布了新的文献求助10
40秒前
44秒前
闪闪灭龙发布了新的文献求助10
44秒前
44秒前
冷傲机器猫完成签到,获得积分0
45秒前
18746005898完成签到 ,获得积分10
46秒前
何YI完成签到,获得积分10
46秒前
个性的丹亦完成签到,获得积分10
47秒前
48秒前
50秒前
53秒前
晓宇发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385