The TM single-atom catalytic system bidirectionally enhances the hydrogen absorption/desorption kinetics of Mg/MgH2: An insight into the synergetic enhancement mechanism and underlying principle

材料科学 动力学 机制(生物学) 解吸 催化作用 Atom(片上系统) 吸收(声学) 氢原子 化学物理 物理化学 化学工程 吸附 化学 物理 计算机科学 有机化学 复合材料 经典力学 量子力学 烷基 嵌入式系统 工程类
作者
Congwen Duan,Haimei Wang,Xinya Wang,Yupeng Liu,Jinhui Wu,Lianxi Hu,Bogu Liu,Haixiang Huang,Fei Wang,Ying Wu
出处
期刊:Journal of Magnesium and Alloys [Elsevier]
卷期号:13 (11): 5624-5636 被引量:1
标识
DOI:10.1016/j.jma.2024.11.020
摘要

Mg/MgH2 has garnered significant attention primarily due to its abundant availability and high gravimetric density. Nevertheless, its practical implementation hindered by its high thermodynamic stability and sluggish kinetics. Fortunately, the introduction of transition metal single atom (TM SA) catalysts has emerged as an effective method to enhance the hydrogen storage properties of Mg/MgH2. Among these catalysts, the synergistic effect of nanoconfinement and TM SAs plays a pivotal role in the hydriding/dehydriding kinetics of Mg/MgH2. However, the effects of varying TM SAs interacting with N modified confined materials on H2 adsorption and desorption and underlying mechanisms remain enigmatic. Leveraging DFT calculations, we investigated the potential of combining TM SA catalysts with N-modified Carbon nanomaterials (CNT) to enhance the hydrogenation/dehydrogenation of Mg/MgH2. TM SA N-CNTs-Mg/MgH2 heterojunction systems encompassing ten 3d/4d transition metals were designed and constructed. We systematically investigated the impact of TM SA N-CNTs on the hydrogen absorption and desorption properties of Mg/MgH2 by examining parameters such as the electronic localization function (ELF), distorted charge density distributions, adsorption energies, dissociation energies, electronegativity, and the d-band center. Notably, the energy barriers for Mg/MgH2 hydrogenation and dehydrogenation were significantly reduced by 0.2–0.7 eV and 1.6–2.2 eV, respectively, through the catalytic promotion of TM SA N-CNTs. Herein, a novel “electronic-ropeway” effect was proposed to elucidate the underlying mechanism responsible for enhancing the hydrogen absorption and desorption kinetics in Mg/MgH2. Specifically, the contribution degree of TM SA N-CNTs and system electronegativity emerged as effective descriptors for predicting the reduced hydrogenation/dehydrogenation energy barriers. It is anticipated that elucidating the role of TM SA-N-CNTs will pave the way for developing innovative strategies to enhance the hydrogen absorption and desorption kinetics of Mg/MgH2 systems, thereby providing valuable design principles for the construction of novel Mg/MgH2 hydrogen storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王威完成签到,获得积分10
1秒前
YCK完成签到,获得积分10
1秒前
科研小白完成签到,获得积分10
1秒前
2秒前
大模型应助flora采纳,获得10
2秒前
Jasper应助aaaaazhou采纳,获得10
2秒前
米饭好吃爱吃完成签到,获得积分10
2秒前
Yummerwei完成签到,获得积分10
3秒前
一直完成签到,获得积分10
3秒前
lavender发布了新的文献求助10
3秒前
4秒前
欣喜踏歌完成签到,获得积分10
4秒前
4秒前
jiaying完成签到 ,获得积分10
5秒前
白诺言完成签到,获得积分10
5秒前
ZSC发布了新的文献求助10
6秒前
香蕉诗蕊应助科研小白采纳,获得10
6秒前
Wolveyu完成签到 ,获得积分10
7秒前
VELPRO发布了新的文献求助10
8秒前
chen测完成签到,获得积分10
8秒前
烟花应助一直采纳,获得10
8秒前
个性的平蓝完成签到 ,获得积分10
9秒前
bio发布了新的文献求助10
9秒前
酷波er应助竹竹采纳,获得10
10秒前
10秒前
破坏王完成签到,获得积分10
11秒前
Wolveyu关注了科研通微信公众号
11秒前
WT完成签到 ,获得积分10
13秒前
小白完成签到,获得积分20
13秒前
知天易易天难完成签到 ,获得积分10
14秒前
AveryZhang发布了新的文献求助10
14秒前
领导范儿应助落寞的寒云采纳,获得10
14秒前
14秒前
VELPRO完成签到,获得积分10
15秒前
神勇的半莲完成签到,获得积分10
15秒前
15秒前
身体健康完成签到,获得积分10
15秒前
和谐如风发布了新的文献求助10
15秒前
syc发布了新的文献求助10
15秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652597
求助须知:如何正确求助?哪些是违规求助? 4787766
关于积分的说明 15060731
捐赠科研通 4811067
什么是DOI,文献DOI怎么找? 2573625
邀请新用户注册赠送积分活动 1529455
关于科研通互助平台的介绍 1488292