Stability Study of Doped-PrCoO3 Perovskites as Oxygen Electrodes in Proton Conducting Electrolysis Cells

电解 兴奋剂 电极 氧气 材料科学 质子 无机化学 光电子学 化学 电解质 物理 物理化学 核物理学 有机化学
作者
Meng Li,Wenjuan Bian,Zeyu Zhao,Dong Ding
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (48): 3321-3321
标识
DOI:10.1149/ma2024-02483321mtgabs
摘要

Within the field of electrochemical systems, perovskite oxides are notable for their high catalytic activity, particularly when they are rich in oxygen vacancies. These materials exhibit oxygen vacancies that have a dual function. These vacancies can enhance targeted reactions by acting as active sites, thereby boosting the overall efficacy of the system. Conversely, they may also initiate a sequence of adverse reactions that weaken the material’s structure and reduce its stability, especially at high temperatures or exposure to high concentration steam or CO 2 , like the typical operation conditions in proton conducting electrolysis cells (PCECs). Although these materials are widely used as oxygen electrodes in PCECs, the specific structural mechanisms that determine their stability under operation conditions are not well understood. In this work, we employed layered double perovskite PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+δ and rhombohedral perovskite PrNi 0.7 Co 0.3 O 3+δ to assess their structural stability. The challenging environments of high temperatures and exposure to high concentration steam accelerate potential structural degradation. Through density functional theory calculations and in situ Fourier transform infrared spectroscopy characterization, we demonstrate how lattice octahedra adapt to operational conditions, leading to anisotropic lattice stress and facilitating elemental segregation in different octahedral configurations. Our investigation delves into the atomic-scale intricacies of perovskite oxides, aiming to dissect the interplay between their structure and stability. This understanding could pave the way for developing more robust and effective materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxl发布了新的文献求助10
刚刚
1秒前
1秒前
H哈哈完成签到,获得积分10
4秒前
陈欣瑶发布了新的文献求助10
5秒前
空白完成签到,获得积分10
5秒前
犯困发布了新的文献求助10
5秒前
田静然发布了新的文献求助10
6秒前
6秒前
天大-小浩发布了新的文献求助10
6秒前
邹一寡完成签到,获得积分20
7秒前
Loney完成签到,获得积分10
7秒前
8秒前
8秒前
YIDAN发布了新的文献求助30
8秒前
10秒前
11秒前
钦林完成签到,获得积分10
12秒前
Loney发布了新的文献求助10
13秒前
13秒前
文艺点点完成签到,获得积分10
13秒前
Wxl完成签到,获得积分10
13秒前
执着谷兰应助wjj119采纳,获得10
14秒前
执着谷兰应助wjj119采纳,获得10
14秒前
执着谷兰应助wjj119采纳,获得10
14秒前
hjyylab应助wjj119采纳,获得10
14秒前
执着谷兰应助wjj119采纳,获得10
14秒前
14秒前
bkagyin应助Cy-coolorgan采纳,获得10
15秒前
852应助学习兮拟排忧采纳,获得10
16秒前
天大-小浩完成签到,获得积分20
16秒前
17秒前
urkk发布了新的文献求助10
17秒前
研友_yLpYkn完成签到,获得积分10
17秒前
17秒前
汤317完成签到,获得积分10
18秒前
只会完成签到,获得积分20
18秒前
爱听歌酸奶完成签到,获得积分10
18秒前
18秒前
天天快乐应助顾北采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406962
求助须知:如何正确求助?哪些是违规求助? 3892083
关于积分的说明 12111654
捐赠科研通 3537028
什么是DOI,文献DOI怎么找? 1940846
邀请新用户注册赠送积分活动 981611
科研通“疑难数据库(出版商)”最低求助积分说明 878106