Bridge component segmentation for health monitoring an enhanced DeepLabV3+ model with lightweight network and multi-scale channel attention mechanism

结构工程 桥(图论) 组分(热力学) 频道(广播) 机制(生物学) 结构健康监测 计算机科学 比例(比率) 分割 工程类 材料科学 计算机网络 人工智能 物理 医学 量子力学 内科学 热力学
作者
Tianyong Jiang,Yali Huang,Chunjun Hu,Lingyun Li
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
标识
DOI:10.1177/13694332241298017
摘要

Due to the influence of various factors, such as complex environments and sustained load effects, the long-term service life of bridge structures will lead to a gradual deterioration in performance. Therefore, bridge health monitoring is of utmost importance, and component identification is a crucial step in evaluating the overall structural integrity of bridges. With the advancement of deep learning algorithms, semantic segmentation methods can effectively classify and identify bridge components in complex environments, thereby facilitating the assessment of their state. Nevertheless, the conventional methods for segmenting bridge components suffer from drawbacks such as intensive computation, inadequate feature extraction, and low segmentation accuracy, failing to meet the requirements of current bridge health monitoring. Consequently, this paper proposes a bridge component segmentation method based on an improved DeepLabV3 + model, named the DeepLabV3-MS, which is based on an enhanced DeepLabV3 + model. This method utilizes MobileNetV2 as the backbone network to reduce parameter count and improve the computational speed of the model. The Strip Pooling (SP) is also integrated into ASPP, known as SP_ASPP, to enhance the capture of more comprehensive contextual information. Additionally, the Multi-scale Channel Attention Mechanism (MS-CAM) is incorporated to enhance the integration efficiency of multi-semantic and multi-scale features. The results indicate that compared with the original DeepLabV3 + model, the Mean Intersection over Union and Mean Pixel Accuracy of the DeeplabV3-MS model increased by 5.90%, and 4.92%, respectively. Furthermore, in comparison to the classic models PSPNet and U-Net, DeeplabV3-MS demonstrated an increase of 19.50% and 8.88% in MIoU and MPA, respectively, as well as 13.50% and 5.34%, respectively. The proposed method has demonstrated superior performance across various evaluation metrics, exerting a significant impact on the health monitoring and safety assessment of bridge components. Furthermore, it offers valuable technical support for research and applications in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifei发布了新的文献求助10
刚刚
木木完成签到,获得积分10
1秒前
独角兽发布了新的文献求助10
1秒前
2秒前
自觉忆山完成签到,获得积分10
3秒前
杨杨杨完成签到,获得积分20
3秒前
4秒前
4秒前
22222发布了新的文献求助30
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
子春完成签到 ,获得积分10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得20
5秒前
GeoEye应助科研通管家采纳,获得10
5秒前
鸣笛应助科研通管家采纳,获得100
5秒前
科目三应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得30
6秒前
李健应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
鸣笛应助科研通管家采纳,获得20
6秒前
ding应助科研通管家采纳,获得10
6秒前
wangjinhe完成签到,获得积分10
6秒前
hjmxb应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
lin发布了新的文献求助10
7秒前
composite66完成签到,获得积分10
8秒前
普鲁斯特发布了新的文献求助10
8秒前
8秒前
9秒前
素素素发布了新的文献求助10
9秒前
9秒前
kevin完成签到,获得积分10
9秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896855
求助须知:如何正确求助?哪些是违规求助? 3440653
关于积分的说明 10818317
捐赠科研通 3165678
什么是DOI,文献DOI怎么找? 1748889
邀请新用户注册赠送积分活动 845021
科研通“疑难数据库(出版商)”最低求助积分说明 788392