Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue

类有机物 诱导多能干细胞 再生医学 计算机科学 干细胞 计算生物学 生物 神经科学 细胞生物学 胚胎干细胞 基因 生物化学
作者
Jianyun Ge,Yun Wang,Qilin Li,F. Liu,Qian Lei,Yun‐Wen Zheng
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:12: e18422-e18422
标识
DOI:10.7717/peerj.18422
摘要

The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joker完成签到,获得积分0
刚刚
刚刚
Tibbar完成签到 ,获得积分10
1秒前
欣喜的缘分完成签到 ,获得积分10
1秒前
fwstu发布了新的文献求助30
4秒前
xiaohuang发布了新的文献求助10
5秒前
8秒前
ycw7777完成签到,获得积分10
9秒前
wang完成签到,获得积分10
9秒前
CWC完成签到,获得积分10
12秒前
student完成签到 ,获得积分10
13秒前
打打应助xiaohuang采纳,获得10
15秒前
轩辕德地完成签到,获得积分10
17秒前
17秒前
19秒前
daijk完成签到,获得积分10
19秒前
清秀龙猫完成签到 ,获得积分10
20秒前
dxurp发布了新的文献求助10
22秒前
欢喜板凳完成签到 ,获得积分10
24秒前
蓝黑木头发布了新的文献求助10
24秒前
幽默的南珍完成签到 ,获得积分10
27秒前
dxurp完成签到,获得积分10
28秒前
29秒前
丹丹完成签到,获得积分10
31秒前
阿然完成签到,获得积分10
34秒前
36秒前
芒果布丁完成签到 ,获得积分10
38秒前
fwstu完成签到,获得积分10
39秒前
40秒前
超级灰狼完成签到 ,获得积分10
42秒前
机灵山河完成签到 ,获得积分20
44秒前
爱爱完成签到 ,获得积分10
45秒前
哭泣青烟完成签到 ,获得积分10
49秒前
i2stay完成签到,获得积分10
55秒前
香锅不要辣完成签到 ,获得积分10
58秒前
阿桂完成签到 ,获得积分10
1分钟前
Zachary完成签到 ,获得积分10
1分钟前
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859