Self-supervised anomaly detection of medical images based on dual-module discrepancy

异常检测 计算机科学 异常(物理) 鉴定(生物学) 对偶(语法数字) 人工智能 注释 模式识别(心理学) 图像(数学) 计算机视觉 凝聚态物理 植物 生物 物理 文学类 艺术
作者
Yuqing Song,Jinyong Cheng
标识
DOI:10.1145/3595916.3626388
摘要

Medical images anomaly detection plays a very important role in modern health care, which helps to improve the quality and efficiency of medical services and promote the development of human health. Due to the high cost of annotation in anomaly images and the fact that most existing methods do not fully utilize information from unlabeled images. Therefore, we propose a new reconstruction network and loss function that can better utilize unlabelled and normal images for anomaly identification. The framework used in this paper consists of two modules, each consisting of three reconstruction networks with the same architecture but different inputs. One module is trained only on normal images and is called the normal module (NM). The other module is trained on both normal images and unlabeled images, and is called the unknown module (UM). Furthermore, the internal differences of the normal module and the differences between the two modules will be used as two powerful anomaly scores, and these two anomaly scores will be refined to indicate anomalies. Experiments on four medical datasets show the state-of-the-art performance by the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
凝土完成签到,获得积分10
2秒前
niefengyun完成签到,获得积分10
2秒前
qizhixu发布了新的文献求助10
3秒前
闫雪艳完成签到 ,获得积分10
3秒前
Alence880完成签到,获得积分10
4秒前
4秒前
123完成签到,获得积分10
4秒前
5秒前
斯文败类应助Yoo.采纳,获得10
5秒前
华生发布了新的文献求助30
5秒前
凝土发布了新的文献求助10
8秒前
田様应助sc95采纳,获得10
8秒前
iii发布了新的文献求助10
10秒前
天天快乐应助江梅引采纳,获得10
10秒前
13秒前
sss发布了新的文献求助10
14秒前
14秒前
闪闪半芹发布了新的文献求助10
17秒前
Akim应助婷糖采纳,获得10
18秒前
18秒前
酷炫的归尘完成签到,获得积分10
19秒前
John发布了新的文献求助30
19秒前
鲤鱼寻菡完成签到,获得积分10
19秒前
19秒前
852应助zhk采纳,获得10
20秒前
20秒前
小蘑菇应助哈哈哈采纳,获得10
24秒前
香蕉觅云应助虚幻夜白采纳,获得10
24秒前
爆米花应助岩岫清风采纳,获得10
24秒前
24秒前
fsj发布了新的文献求助10
25秒前
25秒前
ding应助深情映冬采纳,获得10
26秒前
ntrip完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
zhk发布了新的文献求助10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794581
求助须知:如何正确求助?哪些是违规求助? 3339416
关于积分的说明 10295977
捐赠科研通 3056108
什么是DOI,文献DOI怎么找? 1676896
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762198