An Improved Deep Transfer Learning Method for Rotating Machinery Fault Diagnosis Based on Time Frequency Diagram and Pretraining Model

人工神经网络 计算机科学 残余物 断层(地质) 超参数 特征提取 人工智能 学习迁移 特征(语言学) 机器学习 模式识别(心理学) 算法 语言学 地震学 地质学 哲学
作者
Shaoqing Liu,Z. Ji,Z. Zhang,Y. Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:7
标识
DOI:10.1109/tim.2023.3345907
摘要

Under varying working conditions, the failure prediction model for the same type of equipment often proves ineffective in its deployment and application. Aiming to address the limitations of current fault diagnosis models based on neural networks, such as limited depth, insufficient feature extraction ability, lack of adaptive ability, and poor classification effectiveness in various domains, a novel fault prediction algorithm called deep adaption residual neural network (DARN) was studied and proposed. The algorithm incorporates a pretraining model to enhance its fault diagnosis capabilities. In this method, the time frequency diagram of the original time-series signal is obtained through time frequency processing. At the same time, the residual neural network pretraining model is used as the primary network for feature extraction. In addition, several loss functions are designed to minimize the discrepancy between data categories and the loss of adaptive transfer. The ablation experiments for several hyperparameters were carried out. The proposed method not only improves the accuracy of the fault prediction model but also significantly reduces the training time. Compared with the traditional neural network fault diagnosis model, this method addresses the issues of structural instability and limited feature extraction ability. It ensures that the model maintains strong predictive capabilities across various working conditions. Finally, the method was validated on a public bearing dataset and a homemade bearing dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王泽轩关注了科研通微信公众号
刚刚
桃子发布了新的文献求助30
1秒前
Freya发布了新的文献求助10
1秒前
Hello应助xyu采纳,获得10
2秒前
2秒前
2秒前
3秒前
667完成签到,获得积分10
4秒前
4秒前
杨贵严发布了新的文献求助10
6秒前
煎蛋发布了新的文献求助10
6秒前
6秒前
tongke发布了新的文献求助10
7秒前
DL发布了新的文献求助10
8秒前
8秒前
Orange应助鹂鹂复霖霖采纳,获得10
8秒前
情怀应助dd采纳,获得10
8秒前
胡胡发布了新的文献求助10
9秒前
苏州小北发布了新的文献求助10
10秒前
Ava应助Freya采纳,获得10
10秒前
zyyyy完成签到,获得积分10
10秒前
10秒前
汉堡包应助哈伊呀采纳,获得30
10秒前
Nsync完成签到,获得积分10
12秒前
2213sss完成签到,获得积分10
13秒前
14秒前
18秒前
852应助HHH采纳,获得10
19秒前
Orange应助luo采纳,获得10
19秒前
XStars10发布了新的文献求助10
19秒前
小二郎应助即刻开摆采纳,获得10
20秒前
打打应助huyz采纳,获得10
20秒前
Nsync发布了新的文献求助10
20秒前
吴逸彪发布了新的文献求助10
20秒前
21秒前
23秒前
Owen应助1282941496采纳,获得10
23秒前
qaa2274278941发布了新的文献求助10
24秒前
卡莉完成签到,获得积分10
24秒前
在水一方应助桃子采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726855
求助须知:如何正确求助?哪些是违规求助? 4083863
关于积分的说明 12630316
捐赠科研通 3790325
什么是DOI,文献DOI怎么找? 2093232
邀请新用户注册赠送积分活动 1119016
科研通“疑难数据库(出版商)”最低求助积分说明 995377