CT-Based Radiomics Analysis of Different Machine Learning Models for Discriminating the Risk Stratification of Pheochromocytoma and Paraganglioma: A Multicenter Study

无线电技术 副神经节瘤 嗜铬细胞瘤 危险分层 分层(种子) 人工智能 计算机科学 医学 医学物理学 放射科 内科学 休眠 植物 生物 种子休眠 发芽
作者
Yongjie Zhou,Yuan Zhan,Jinhong Zhao,Linhua Zhong,Yongming Tan,Wei Zeng,Qiao Zeng,Mingxian Gong,Aihua Li,Lianggeng Gong,Lan Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (7): 2859-2871 被引量:9
标识
DOI:10.1016/j.acra.2024.01.008
摘要

Rationale and Objectives

Using different machine learning models CT-based radiomics to integrate clinical radiological features to discriminating the risk stratification of pheochromocytoma/paragangliomas (PPGLs).

Materials and Methods

The present study included 201 patients with PPGLs from three hospitals (training set: n = 125; external validation set: n = 45; external test set: n = 31). Patients were divided into low-risk and high-risk groups using a staging system for adrenal pheochromocytoma and paraganglioma (GAPP). We extracted and selected CT radiomics features, and built radiomics models using support vector machines (SVM), k-nearest neighbors, random forests, and multilayer perceptrons. Using receiver operating characteristic curve analysis to select the optimal radiomics model, a combined model was built using the output of the optimal radiomics model and clinical radiological features, and its accuracy and clinical applicability were evaluated using calibration curves and clinical decision curve analysis (DCA).

Results

Finally, 13 radiomics features were selected to construct machine learning models. In the radiomics model, the SVM model demonstrated higher accuracy and stability, with an AUC value of 0.915 in the training set, 0.846 in external validation set, and 0.857 in external test set. Combining the outputs of SVM models with two clinical radiological features, a combined model constructed has demonstrated optimal risk stratification ability for PPGLs with an AUC of 0.926 for the training set, 0.883 for the external validation set, and 0.899 for the external test set. The calibration curve and DCA show good calibration accuracy and clinical effectiveness for the combined model.

Conclusion

Combined model that integrates radiomics and clinical radiological features can discriminate the risk stratification of PPGLs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听的雪卉完成签到,获得积分10
刚刚
Rose发布了新的文献求助10
刚刚
赘婿应助炙热猎豹采纳,获得10
1秒前
周志友完成签到,获得积分10
1秒前
Duuuu发布了新的文献求助10
1秒前
2秒前
羊yang发布了新的文献求助10
2秒前
嫁接诺贝尔应助lili采纳,获得10
2秒前
汉堡包应助lili采纳,获得10
2秒前
酷波er应助lili采纳,获得10
2秒前
此晴可待发布了新的文献求助10
3秒前
3秒前
orixero应助小美采纳,获得10
3秒前
科研通AI6应助zyw采纳,获得10
3秒前
4秒前
殷勤的天亦完成签到,获得积分20
4秒前
澄桦完成签到,获得积分10
4秒前
4秒前
务实源智发布了新的文献求助10
4秒前
4秒前
4秒前
机灵又蓝完成签到 ,获得积分10
4秒前
上学威龙发布了新的文献求助10
5秒前
天天快乐应助estrale采纳,获得10
5秒前
July发布了新的文献求助10
5秒前
新晋牛马完成签到,获得积分10
5秒前
MiMa完成签到,获得积分20
6秒前
6秒前
研友_ZAeR6Z完成签到,获得积分10
6秒前
7秒前
dandelion发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
顺利毕业发布了新的文献求助10
8秒前
舒心的完成签到 ,获得积分10
8秒前
MiMa发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721