亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-Based Radiomics Analysis of Different Machine Learning Models for Discriminating the Risk Stratification of Pheochromocytoma and Paraganglioma: A Multicenter Study

无线电技术 副神经节瘤 嗜铬细胞瘤 危险分层 分层(种子) 人工智能 计算机科学 医学 医学物理学 放射科 内科学 休眠 植物 生物 种子休眠 发芽
作者
Yongjie Zhou,Yuan Zhan,Jinhong Zhao,Linhua Zhong,Yongming Tan,Wei Zeng,Qiao Zeng,Mingxian Gong,Aihua Li,Lianggeng Gong,Lan Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2859-2871 被引量:9
标识
DOI:10.1016/j.acra.2024.01.008
摘要

Rationale and Objectives

Using different machine learning models CT-based radiomics to integrate clinical radiological features to discriminating the risk stratification of pheochromocytoma/paragangliomas (PPGLs).

Materials and Methods

The present study included 201 patients with PPGLs from three hospitals (training set: n = 125; external validation set: n = 45; external test set: n = 31). Patients were divided into low-risk and high-risk groups using a staging system for adrenal pheochromocytoma and paraganglioma (GAPP). We extracted and selected CT radiomics features, and built radiomics models using support vector machines (SVM), k-nearest neighbors, random forests, and multilayer perceptrons. Using receiver operating characteristic curve analysis to select the optimal radiomics model, a combined model was built using the output of the optimal radiomics model and clinical radiological features, and its accuracy and clinical applicability were evaluated using calibration curves and clinical decision curve analysis (DCA).

Results

Finally, 13 radiomics features were selected to construct machine learning models. In the radiomics model, the SVM model demonstrated higher accuracy and stability, with an AUC value of 0.915 in the training set, 0.846 in external validation set, and 0.857 in external test set. Combining the outputs of SVM models with two clinical radiological features, a combined model constructed has demonstrated optimal risk stratification ability for PPGLs with an AUC of 0.926 for the training set, 0.883 for the external validation set, and 0.899 for the external test set. The calibration curve and DCA show good calibration accuracy and clinical effectiveness for the combined model.

Conclusion

Combined model that integrates radiomics and clinical radiological features can discriminate the risk stratification of PPGLs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
嘎嘎嘎完成签到,获得积分10
26秒前
28秒前
归海浩阑完成签到,获得积分10
29秒前
36秒前
CodeCraft应助夏夏夏夏夏夏采纳,获得10
37秒前
43秒前
GU由于求助违规,被管理员扣积分10
1分钟前
hanawang应助轻松板栗采纳,获得30
1分钟前
yangyang给yangyang的求助进行了留言
1分钟前
null给GU的求助进行了留言
1分钟前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
qpp发布了新的文献求助10
1分钟前
深渊与海完成签到,获得积分10
1分钟前
鱼鱼完成签到 ,获得积分10
1分钟前
hanawang应助banxia0001采纳,获得20
1分钟前
kuku上岸完成签到,获得积分10
1分钟前
hanawang应助轻松板栗采纳,获得10
1分钟前
一颗溏心蛋完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
胡静发布了新的文献求助10
2分钟前
YYL完成签到 ,获得积分10
2分钟前
2分钟前
大模型应助微笑的鼠标采纳,获得10
2分钟前
科研通AI2S应助胡静采纳,获得10
2分钟前
2分钟前
czq完成签到 ,获得积分10
2分钟前
耍酷蘑菇完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
浮游应助null采纳,获得10
3分钟前
科研通AI5应助倪妮采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得30
3分钟前
归尘应助科研通管家采纳,获得30
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116192
求助须知:如何正确求助?哪些是违规求助? 4322907
关于积分的说明 13469685
捐赠科研通 4155108
什么是DOI,文献DOI怎么找? 2276985
邀请新用户注册赠送积分活动 1278855
关于科研通互助平台的介绍 1216881