Artificial Intelligence in Endodontic Education

牙科 牙髓治疗 材料科学 医学 根管
作者
Anita Aminoshariae,Ali Nosrat,Venkateshbabu Nagendrababu,Omid Dianat,Hossein Mohammad‐Rahimi,Abbey W. O'Keefe,Frank Setzer
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:50 (5): 562-578 被引量:10
标识
DOI:10.1016/j.joen.2024.02.011
摘要

Abstract

Aims

The future dental and endodontic education must adapt to the current digitalized healthcare system in a hyper-connected world. The purpose of this scoping review was to investigate the ways an endodontic education curriculum could benefit from the implementation of artificial intelligence (AI) and overcome the limitations of this technology in the delivery of healthcare to patients.

Methods

An electronic search was carried out up to December 2023 using MEDLINE, Web of Science, Cochrane Library, and a manual search of reference literature. Grey literature, ongoing clinical trials were also searched using ClinicalTrials.gov.

Results

The search identified 251 records, of which 35 were deemed relevant to AI and Endodontic education. Areas in which AI might aid students with their didactic and clinical endodontic education were identified as follows: 1) radiographic interpretation; 2) differential diagnosis; 3) treatment planning and decision-making; 4) case difficulty assessment; 5) preclinical training; 6) advanced clinical simulation and case-based training, 7) real-time clinical guidance; 8) autonomous systems and robotics; 9) progress evaluation and personalized education; 10) calibration and standardization.

Conclusions

AI in endodontic education will support clinical and didactic teaching through individualized feedback; enhanced, augmented, and virtually generated training aids; automated detection and diagnosis; treatment planning and decision support; and AI-based student progress evaluation, and personalized education. Its implementation will inarguably change the current concept of teaching Endodontics. Dental educators would benefit from introducing AI in clinical and didactic pedagogy; however, they must be aware of AI's limitations and challenges to overcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长琴思顾发布了新的文献求助10
刚刚
蓝天完成签到,获得积分10
1秒前
3秒前
dudu10000发布了新的文献求助10
4秒前
大意的雨双完成签到 ,获得积分10
6秒前
NEO完成签到 ,获得积分10
7秒前
小杰完成签到 ,获得积分10
8秒前
小马甲应助yaoyaozi采纳,获得10
8秒前
xy发布了新的文献求助10
8秒前
JamesPei应助猫北采纳,获得10
10秒前
考研小白完成签到,获得积分10
11秒前
Yola完成签到,获得积分10
11秒前
ning完成签到,获得积分10
14秒前
斯文败类应助zxx采纳,获得10
16秒前
KYT完成签到 ,获得积分10
17秒前
18秒前
dudu10000完成签到,获得积分10
19秒前
科研通AI5应助长安宁采纳,获得10
20秒前
细心的代天完成签到 ,获得积分10
24秒前
range关注了科研通微信公众号
25秒前
zhl发布了新的文献求助10
25秒前
26秒前
斐嘿嘿发布了新的文献求助10
26秒前
28秒前
小趴菜发布了新的文献求助10
30秒前
zhl完成签到,获得积分10
30秒前
31秒前
Even完成签到 ,获得积分10
31秒前
追梦发布了新的文献求助10
32秒前
斐嘿嘿完成签到,获得积分10
34秒前
Shandongdaxiu发布了新的文献求助10
35秒前
小趴菜完成签到,获得积分10
35秒前
一鸣关注了科研通微信公众号
36秒前
42秒前
altaf完成签到,获得积分10
42秒前
来自山灵的风完成签到,获得积分10
43秒前
yuan完成签到 ,获得积分10
43秒前
44秒前
长琴思顾完成签到,获得积分10
44秒前
猫北发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751