The Advancement of Catalysts for Proton‐Exchange Membrane Fuel Cells

质子交换膜燃料电池 催化作用 质子 燃料电池 化学 业务 化学工程 材料科学 工程类 物理 核物理学 生物化学
作者
Yi Cheng,Shuangyin Wang
标识
DOI:10.1002/9783527831005.ch9
摘要

Chapter 9 The Advancement of Catalysts for Proton-Exchange Membrane Fuel Cells Yi Cheng, Yi Cheng Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083 China Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha, 410083 ChinaSearch for more papers by this authorShuangyin Wang, Shuangyin Wang State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 ChinaSearch for more papers by this author Yi Cheng, Yi Cheng Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083 China Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha, 410083 ChinaSearch for more papers by this authorShuangyin Wang, Shuangyin Wang State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 ChinaSearch for more papers by this author Book Editor(s):Shaohua Shen, Shaohua Shen Xi'an Jiaotong University, Xi'an, ChinaSearch for more papers by this authorShuangyin Wang, Shuangyin Wang Hunan University, Changsha, ChinaSearch for more papers by this author First published: 23 February 2024 https://doi.org/10.1002/9783527831005.ch9 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Proton-exchange membrane fuel cells (PEMFCs) advantages such as being environmentally friendly, having higher efficiencies, being steady and noise-free, are promising for automobile, portable, and stationary applications. Catalysts are the key materials that determine their feasible, wide applications. Huge efforts devoted in the past several decades have significantly advanced the PEMFCs. Due to the high cost of Pt-based catalysts, the ultimate goal of catalysts engineering is to design the materials at atomic scale aimed at reducing the loading of noble metals without compromising their performance. Size and composition control, shape engineering, atomic ordering are the key strategies to fulfill the goal. Searching for noble-metal free catalysts to replace the Pt-group materials is also attracting enormous interests, and huge advancements have been achieved; however, a long way is still required to make these noble-metal free catalysts commercial available in PEMFCs. References Lu , Y. et al. ( 2020 ). Air pollutant emissions from fossil fuel consumption in China: current status and future predictions . Atmos. Environ. 231 : 117536 , https://doi.org/10.1016/j.atmosenv.2020.117536 . 10.1016/j.atmosenv.2020.117536 Web of Science®Google Scholar Wang , L. et al. ( 2016 ). Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China . Appl. Energy 163 : 244 – 253 , https://doi.org/10.1016/j.apenergy.2015.10.189 . 10.1016/j.apenergy.2015.10.189 Web of Science®Google Scholar Jiao , K. et al. ( 2021 ). Designing the next generation of proton-exchange membrane fuel cells . Nature 595 : 361 – 369 , https://doi.org/10.1038/s41586-021-03482-7 . 10.1038/s41586-021-03482-7 CASPubMedWeb of Science®Google Scholar Suter , T.A.M. et al. Engineering catalyst layers for next-generation polymer electrolyte fuel cells: a review of design, materials, and methods . Adv. Energy Mater. n/a 2101025 . https://doi.org/10.1002/aenm.202101025 . 10.1002/aenm.202101025 Web of Science®Google Scholar Banham , D. et al. ( 2021 ). Ultralow platinum loading proton exchange membrane fuel cells: performance losses and solutions . J. Power Sources 490 : 229515 , https://doi.org/10.1016/j.jpowsour.2021.229515 . 10.1016/j.jpowsour.2021.229515 Web of Science®Google Scholar Zhang , J. , Xiang , Y. , Lu , S. , and Jiang , S.P. ( 2018 ). High temperature polymer electrolyte membrane fuel cells for integrated fuel cell – methanol reformer power systems: a critical review . Adv. Sustainable Syst. 2 : 1700184 , https://doi.org/10.1002/adsu.201700184 . 10.1002/adsu.201700184 Web of Science®Google Scholar Kongkanand , A. , Gu , W. , and Mathias , M.F. ( 2019 ). Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition (ed. T.E. Lipman and A.Z. Weber ), 323 – 342 . New York : Springer . 10.1007/978-1-4939-7789-5_1022 Google Scholar Yuan , H. et al. ( 2022 ). Understanding dynamic behavior of proton exchange membrane fuel cell in the view of internal dynamics based on impedance . Chem. Eng. J. 431 : 134035 , https://doi.org/10.1016/j.cej.2021.134035 . 10.1016/j.cej.2021.134035 PubMedWeb of Science®Google Scholar Sheng , W. , Myint , M. , Chen , J.G. , and Yan , Y. ( 2013 ). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces . Energy Environ. Sci. 6 : 1509 – 1512 , https://doi.org/10.1039/C3EE00045A . 10.1039/c3ee00045a CASWeb of Science®Google Scholar Durst , J. et al. ( 2014 ). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism . Energy Environ. Sci. 7 : 2255 – 2260 , https://doi.org/10.1039/C4EE00440J . 10.1039/C4EE00440J CASWeb of Science®Google Scholar Tian , X. , Zhao , P. , and Sheng , W. ( 2019 ). Hydrogen evolution and oxidation: mechanistic studies and material advances . Adv. Mater. 31 : 1808066 , https://doi.org/10.1002/adma.201808066 . 10.1002/adma.201808066 PubMedWeb of Science®Google Scholar Wang , Y. ( 2021 ). Electrocatalysis in Balancing the Natural Carbon Cycle , 111 – 132 . Wiley . Google Scholar Krischer , K. and Savinova , E.R. ( 1873 -1905). Handbook of Heterogeneous Catalysis . Wiley . Google Scholar Durst , J. , Simon , C. , Hasché , F. , and Gasteiger , H.A. ( 2014 ). Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media . J. Electrochem. Soc. 162 : F190 – F203 , https://doi.org/10.1149/2.0981501jes . 10.1149/2.0981501jes CASWeb of Science®Google Scholar Hunt , S.T. et al. ( 2016 ). Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts . Science 352 : 974 – 978 , https://doi.org/10.1126/science.aad8471 . 10.1126/science.aad8471 CASPubMedWeb of Science®Google Scholar Hunt , S.T. , Milina , M. , Wang , Z. , and Román-Leshkov , Y. ( 2016 ). Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles . Energy Environ. Sci. 9 : 3290 – 3301 , https://doi.org/10.1039/C6EE01929C . 10.1039/C6EE01929C CASWeb of Science®Google Scholar Saha , S. , Martin , B. , Leonard , B. , and Li , D. ( 2016 ). Probing synergetic effects between platinum nanoparticles deposited via atomic layer deposition and a molybdenum carbide nanotube support through surface characterization and device performance . J. Mater. Chem. A 4 : 9253 – 9265 , https://doi.org/10.1039/C6TA03198F . 10.1039/C6TA03198F CASWeb of Science®Google Scholar Wang , X. et al. ( 2021 ). Proton exchange membrane fuel cells powered with both CO and H 2 . Proc. Natl. Acad. Sci. U.S.A. 118 : e2107332118 , https://doi.org/10.1073/pnas.2107332118 . 10.1073/pnas.2107332118 Web of Science®Google Scholar Zhang , Z. et al. ( 2021 ). Pt atoms on doped carbon nanosheets with ultrahigh N content as a superior bifunctional catalyst for hydrogen evolution/oxidation . Sustainable Energy Fuels 5 : 532 – 539 , https://doi.org/10.1039/D0SE01516D . 10.1039/D0SE01516D CASWeb of Science®Google Scholar Yang , X. et al. CO-Tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles . Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202110900 . 10.1002/anie.202110900 Web of Science®Google Scholar Yang , C.-L. et al. ( 2021 ). Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells . Science 374 : 459 – 464 , https://doi.org/10.1126/science.abj9980 . 10.1126/science.abj9980 CASPubMedWeb of Science®Google Scholar Nørskov , J.K. et al. ( 2004 ). Origin of the overpotential for oxygen reduction at a fuel-cell cathode . J. Phys. Chem. B 108 : 17886 – 17892 , https://doi.org/10.1021/jp047349j . 10.1021/jp047349j CASWeb of Science®Google Scholar Si , F. et al. ( 2014 ). Rotating Electrode Methods and Oxygen Reduction Electrocatalysts (ed. W. Xing , G. Yin , and J. Zhang ), 133 – 170 . Elsevier . 10.1016/B978-0-444-63278-4.00004-5 Google Scholar Nesselberger , M. et al. ( 2011 ). The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models . JACS 133 : 17428 – 17433 , https://doi.org/10.1021/ja207016u . 10.1021/ja207016u CASPubMedWeb of Science®Google Scholar Shao , M. , Peles , A. , and Shoemaker , K. ( 2011 ). Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity . Nano Lett. 11 : 3714 – 3719 , https://doi.org/10.1021/nl2017459 . 10.1021/nl2017459 CASPubMedWeb of Science®Google Scholar Kongkanand , A. , Gu , W. , and Mathias , M.F. ( 2019 ). Fuel Cells and Hydrogen Production Ch. Chapter 1022, 323 – 342 . Springer . 10.1007/978-1-4939-7789-5_1022 Google Scholar Yamamoto , K. and Imaoka , T. ( 2014 ). Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer . Acc. Chem. Res. 47 : 1127 – 1136 , https://doi.org/10.1021/ar400257s . 10.1021/ar400257s CASPubMedWeb of Science®Google Scholar Yamamoto , K. , Imaoka , T. , Tanabe , M. , and Kambe , T. ( 2020 ). New horizon of nanoparticle and cluster catalysis with dendrimers . Chem. Rev. 120 : 1397 – 1437 , https://doi.org/10.1021/acs.chemrev.9b00188 . 10.1021/acs.chemrev.9b00188 CASPubMedWeb of Science®Google Scholar Yamamoto , K. et al. ( 2009 ). Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions . Nat. Chem. 1 : 397 – 402 , https://doi.org/10.1038/nchem.288 . 10.1038/nchem.288 CASPubMedWeb of Science®Google Scholar Imaoka , T. , Kitazawa , H. , Chun , W.J. , and Yamamoto , K. ( 2015 ). Finding the most catalytically active platinum clusters with low atomicity . Angew. Chem. Int. Ed. 54 : 9810 – 9815 , https://doi.org/10.1002/anie.201504473 . 10.1002/anie.201504473 CASPubMedWeb of Science®Google Scholar Zhao , J. , Liu , J. , Jin , C. , and Wang , F. ( 2021 ). Subnanoscale platinum by repeated UV irradiation: from one and few atoms to clusters for the automotive PEMFC . ACS Appl. Mater. Interfaces 13 : 8395 – 8404 , https://doi.org/10.1021/acsami.0c20935 . 10.1021/acsami.0c20935 CASPubMedWeb of Science®Google Scholar Liu , J. et al. ( 2017 ). High performance platinum single atom electrocatalyst for oxygen reduction reaction . Nat. Commun. 8 : 1 – 9 , https://doi.org/10.1038/ncomms15938 . 10.1038/ncomms15938 PubMedWeb of Science®Google Scholar Fang , S. et al. ( 2020 ). Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction . Nat. Commun. 11 : 1029 , https://doi.org/10.1038/s41467-020-14848-2 . 10.1038/s41467-020-14848-2 CASPubMedWeb of Science®Google Scholar Liu , J. et al. ( 2021 ). Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction . ACS Catal. 11 : 466 – 475 , https://doi.org/10.1021/acscatal.0c03330 . 10.1021/acscatal.0c03330 CASWeb of Science®Google Scholar Liu , J. et al. ( 2019 ). Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction . Angew. Chem. Int. Ed. 58 : 1163 – 1167 , https://doi.org/10.1002/anie.201812423 . 10.1002/anie.201812423 CASPubMedWeb of Science®Google Scholar Zhu , X. et al. ( 2021 ). Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning . Angew. Chem. Int. Ed. 60 : 21911 – 21917 , https://doi.org/10.1002/anie.202107790 . 10.1002/anie.202107790 CASPubMedWeb of Science®Google Scholar Liu , Q. et al. ( 2020 ). Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells . Adv. Energy Mater. 10 : 2000689 , https://doi.org/10.1002/aenm.202000689 . 10.1002/aenm.202000689 CASWeb of Science®Google Scholar Xiao , M. et al. ( 2019 ). A single-atom iridium heterogeneous catalyst in oxygen reduction reaction . Angew. Chem. Int. Ed. 58 : 9640 – 9645 , https://doi.org/10.1002/anie.201905241 . 10.1002/anie.201905241 CASPubMedWeb of Science®Google Scholar Hammer , B. and Nørskov , J.K. ( 1995 ). Electronic factors determining the reactivity of metal surfaces . Surf. Sci. 343 : 211 – 220 , https://doi.org/10.1016/0039-6028(96)80007-0 . 10.1016/0039-6028(96)80007-0 CASWeb of Science®Google Scholar Breiter , M.W. ( 2010 ). Handbook of Fuel Cells . Wiley . 10.1002/9780470974001.f204027 Google Scholar Xiao , W. , Lei , W. , Gong , M. et al. ( 2018 ). Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis . ACS Catal. 8 : 3237 – 3256 , https://doi.org/10.1021/acscatal.7b04420 . 10.1021/acscatal.7b04420 CASWeb of Science®Google Scholar Cheng , H. et al. ( 2021 ). Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction . Proc. Natl. Acad. Sci. U.S.A. 118 : e2104026118 , https://doi.org/10.1073/pnas.2104026118 . 10.1073/pnas.2104026118 Web of Science®Google Scholar Chang , F. et al. ( 2020 ). Strain-modulated platinum–palladium nanowires for oxygen reduction reaction . Nano Lett. 20 : 2416 – 2422 , https://doi.org/10.1021/acs.nanolett.9b05123 . 10.1021/acs.nanolett.9b05123 CASPubMedWeb of Science®Google Scholar Bordley , J.A. and El-Sayed , M.A. ( 2016 ). Enhanced electrocatalytic activity toward the oxygen reduction reaction through alloy formation: platinum–silver alloy nanocages . J. Phys. Chem. C 120 : 14643 – 14651 , https://doi.org/10.1021/acs.jpcc.6b03032 . 10.1021/acs.jpcc.6b03032 CASWeb of Science®Google Scholar Chong , L. et al. ( 2018 ). Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks . Science 362 : 1276 – 1281 , https://doi.org/10.1126/science.aau0630 . 10.1126/science.aau0630 CASPubMedWeb of Science®Google Scholar Greeley , J. et al. ( 2009 ). Alloys of platinum and early transition metals as oxygen reduction electrocatalysts . Nat. Chem. 1 : 552 – 556 , https://doi.org/10.1038/nchem.367 . 10.1038/nchem.367 CASPubMedWeb of Science®Google Scholar Huang , H. et al. ( 2017 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
欣慰大白完成签到,获得积分20
1秒前
李若风完成签到,获得积分10
1秒前
PZD完成签到,获得积分10
1秒前
烂漫的煎饼完成签到 ,获得积分10
2秒前
2秒前
2秒前
4秒前
woollen2022发布了新的文献求助10
4秒前
4秒前
江湖笑发布了新的文献求助10
4秒前
发嗲的高跟鞋完成签到,获得积分10
4秒前
乐观的飞雪完成签到,获得积分10
5秒前
是一个小朋友完成签到,获得积分10
6秒前
6秒前
cctv18应助白日幻想家采纳,获得10
7秒前
小二郎应助白日幻想家采纳,获得10
7秒前
刘博洋发布了新的文献求助10
7秒前
Anyemzl完成签到,获得积分10
9秒前
ss完成签到,获得积分10
9秒前
小兜豆豆完成签到,获得积分10
10秒前
10秒前
10秒前
1111发布了新的文献求助10
10秒前
疯狂的寄柔完成签到,获得积分10
11秒前
centlay应助栗乾腾采纳,获得10
11秒前
小胖墩应助晚风采纳,获得10
11秒前
ning完成签到,获得积分10
15秒前
为光发布了新的文献求助10
15秒前
郑敦锦发布了新的文献求助10
15秒前
落榜美术生完成签到 ,获得积分10
15秒前
提莫队长完成签到,获得积分10
16秒前
18秒前
小鱼儿完成签到 ,获得积分10
18秒前
木石前盟完成签到,获得积分10
19秒前
cuc发布了新的文献求助30
21秒前
woollen2022完成签到,获得积分10
21秒前
李九妹完成签到 ,获得积分10
21秒前
hqhbj77完成签到,获得积分10
21秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2451598
求助须知:如何正确求助?哪些是违规求助? 2124581
关于积分的说明 5406424
捐赠科研通 1853335
什么是DOI,文献DOI怎么找? 921748
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493067