Spatial-temporal graph convolution network model with traffic fundamental diagram information informed for network traffic flow prediction

计算机科学 邻接矩阵 图形 邻接表 数据挖掘 算法 交通生成模型 理论计算机科学 实时计算
作者
Zhao Liu,Fan Ding,Yunqi Dai,Linchao Li,Tianyi Chen,Huachun Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123543-123543 被引量:10
标识
DOI:10.1016/j.eswa.2024.123543
摘要

Accurate and fine-grained traffic state prediction has always been an important research field. For long-term traffic flow prediction, the high-dimensional and coupled traffic feature evolution patterns are deeply recessive, posing challenges in effectively characterizing and modeling them. This paper proposed a novel spatial-temporal graph convolution network model with traffic Fundamental Diagram (FD) information informed. The model decouples the high-dimensional spatiotemporal relationships in the transportation network and fully leverages the physical evolution laws of traffic states. First, the Graph Convolutional Network (GCN) with a spatial attention mechanism was proposed to capture spatial relations of road network. The mechanism can better represent the spatial dynamics of the graph adjacency matrix in GCN. Second, this study injected prior physical knowledge into the graph adjacency matrix. This process was achieved by embedding characteristics of FDs from historical traffic data on the diagonal of the matrix, by which the propagation pattern of traffic states in road network could be considered. Third, to further catch the time dependence of road network, the Gated Recurrent Unit (GRU) structure and the Transformer encoding structure were employed to locally and globally reform traffic state time sequences. Finally, experiments on a revised traffic dataset demonstrated that the proposed method consistently outperforms other baselines regarding Mean Absolute Error and Root Mean Square Error across all cases. And, it achieved the optimal Mean Absolute Percentage Error in the 30- and 60-minute prediction tasks. This study shows a novel solution to inform traffic physical laws into data-driven state prediction models, and the reliability of the proposed method in long-term prediction offers valuable support for improving traffic management and alleviating traffic congestion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助Clover采纳,获得10
2秒前
冯尔蓝发布了新的文献求助10
2秒前
可可可11完成签到 ,获得积分10
2秒前
2秒前
3秒前
SciGPT应助意志所向采纳,获得10
4秒前
吃颗糖吧完成签到,获得积分20
4秒前
XIL发布了新的文献求助10
5秒前
微笑的天抒完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
7秒前
万能图书馆应助hxldsb采纳,获得10
7秒前
7秒前
lh发布了新的文献求助10
7秒前
jingjing发布了新的文献求助150
8秒前
8秒前
wong8384发布了新的文献求助10
8秒前
9秒前
共享精神应助小苏采纳,获得10
9秒前
小黄发布了新的文献求助10
9秒前
自觉绿柏完成签到,获得积分10
10秒前
jimmy发布了新的文献求助10
10秒前
10秒前
eurhfe完成签到,获得积分10
11秒前
11秒前
orixero应助坦率尔琴采纳,获得10
11秒前
Newky发布了新的文献求助10
11秒前
pojian完成签到,获得积分10
13秒前
13秒前
15秒前
上官若男应助XIL采纳,获得10
15秒前
16秒前
jimmy完成签到,获得积分20
16秒前
16秒前
16秒前
吴图图发布了新的文献求助10
16秒前
爆米花应助Erinzz采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178