Improved feature ranking fusion process with Hybrid model for crop yield prediction

排名(信息检索) 过程(计算) 计算机科学 产量(工程) 特征(语言学) 融合 人工智能 机器学习 模式识别(心理学) 作物产量 作物 数据挖掘 数学 农业工程 农学 工程类 生物 哲学 操作系统 语言学 冶金 材料科学
作者
Swanth Boppudi,Suresh Kumar Jayachandran
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106121-106121
标识
DOI:10.1016/j.bspc.2024.106121
摘要

Former and accurate prediction of the crop yield is vital for statistical as well as economic valuation on the farm levels to govern investment plans in agricultural products. Among the difficult problems in the agricultural industry, crop yield predictions performed to forecast the higher yield of crops using artificial intelligence techniques faces more complications. Considering the increasing significance of crop yield predictions, this paper proposes a new crop yield prediction model by utilizing hybrid classification model based on the improved feature ranking fusion process. In this model, initially the unnecessary data is cleansed by Data Normalization and subsequentl By an improved SMOTE algorithm is proposed that enhances the data to make it proper for feature extraction. The data features are essential to analyses the respective in-depth information, hence, the feature extraction process includes the extraction of Improved Correlation based features, Statistical features, Entropy features and Raw Data. In order to ensure the selection of most important features, it is necessary to make optimal feature selection. Therefore, an improved feature ranking fusion process is employed to choose the suitable features, in which, the results of three feature selection methods like chi-square, Relief and RFE are included. Finally, the prediction process is carried out by the proposed hybrid model, which is the combination of LSTM and DBN models. Finally, the performance of proposed work is validated in terms of accuracy, precision, specificity, sensitivity and then the results show that compared to the conventional classifiers such as LSTM, DBN, CNN, Bi-GRU, SVM, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Idiot童鞋发布了新的文献求助50
3秒前
3秒前
二宝发布了新的文献求助20
5秒前
5秒前
鲸落完成签到,获得积分10
6秒前
8秒前
小z完成签到,获得积分10
11秒前
Idiot童鞋完成签到,获得积分10
12秒前
端庄以冬完成签到,获得积分10
12秒前
能能发布了新的文献求助10
13秒前
万能图书馆应助愿我可采纳,获得10
14秒前
14秒前
枫叶发布了新的文献求助10
18秒前
爆米花应助溯源采纳,获得10
20秒前
21秒前
啦啦啦啦啦完成签到,获得积分10
21秒前
强强强强发布了新的文献求助10
23秒前
Light应助大气云朵采纳,获得10
27秒前
快乐吗猪完成签到 ,获得积分10
27秒前
张行完成签到,获得积分10
28秒前
swy完成签到 ,获得积分10
29秒前
简单面包完成签到,获得积分10
30秒前
31秒前
感动的红酒完成签到,获得积分10
33秒前
庸人自扰完成签到,获得积分10
34秒前
34秒前
愿我可完成签到,获得积分10
35秒前
大气云朵完成签到,获得积分10
35秒前
骉骉完成签到,获得积分10
36秒前
鲸落发布了新的文献求助10
37秒前
ShiYanYang完成签到,获得积分10
37秒前
愿我可发布了新的文献求助10
38秒前
爆米花应助zengyiqiao采纳,获得10
41秒前
wodeqiche2007发布了新的文献求助30
42秒前
Ivy完成签到,获得积分20
43秒前
suan完成签到,获得积分10
43秒前
wocao完成签到 ,获得积分10
43秒前
FashionBoy应助眼睛大的平卉采纳,获得10
44秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751