Deciphering the force history of 2021 Chamoli rockslide

岩滑 2019年冠状病毒病(COVID-19) 医学 地质学 岩土工程 内科学 山崩 传染病(医学专业) 疾病
作者
Athul Palliath,Himangshu Paul,N. Purnachandra Rao,Venkatesh Vempati
标识
DOI:10.5194/egusphere-egu24-20256
摘要

Landslides are a significant hazard, particularly for those living in mountainous regions where the terrain is steep and unstable. Unfortunately, continuous monitoring of landslides is challenging due to their unpredictable nature. However, recent advancements in high-quality, dense broadband seismic networks have made it possible to study the spatial and temporal evolution of mass wasting processes through the analysis of seismic signals. The 2021 Chamoli rockslide which originated from a glaciated ridge of the Ronti Mountain in the western Himalaya caused severe damage to a hydropower project in downslope region and a casualty of about 80 people. CSIR-National Geophysical Research Institute established a regional seismic network in the Uttarakhand Himalaya which provides a great scope to understand this event in greater detail. We have performed dynamic inversion of the long period seismic waves generated by the rockslide to derive its force history. We used multistation data from Uttarakhand regional seismic network. We used IRIS syngine to generate Green’s function based on ak135 velocity model. Long period seismic waveforms from 6 stations within a distance of 80 km were chosen to perform inversion based on the signal to noise ratio and azimuthal coverage. The inversion is done using python package called lsforce. We reconstruct the force time history of the landslide, from the initial detachment of the rock mass to its impact on the ground. The peak upward vertical force corresponds to the detachment and peak downward vertical force corresponds its  the imapct  onto the ground. The result agrees with the centroid single force inversion done for the phases of detachment and impact of the landslide. The result obtained from force time history can be used to constrain parameters for the numerical simulation of the landslide to understand its dynamics in detail.  

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
在水一方应助无辜梨愁采纳,获得10
3秒前
谨慎的友安完成签到 ,获得积分10
4秒前
豆包不是包完成签到,获得积分10
4秒前
5秒前
6秒前
文艺的初南完成签到 ,获得积分10
8秒前
徐浩彬发布了新的文献求助30
8秒前
喵喵发布了新的文献求助10
8秒前
8秒前
英姑应助二三采纳,获得10
8秒前
wen完成签到,获得积分10
9秒前
喽喽发布了新的文献求助10
9秒前
10秒前
梅子酒发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助50
13秒前
k.o.发布了新的文献求助10
13秒前
wanci应助喵喵采纳,获得10
15秒前
icarus发布了新的文献求助10
16秒前
momomo发布了新的文献求助10
17秒前
无辜梨愁发布了新的文献求助10
19秒前
细心芙发布了新的文献求助10
19秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
SciGPT应助momomo采纳,获得10
32秒前
顾矜应助k.o.采纳,获得10
32秒前
32秒前
34秒前
35秒前
36秒前
40秒前
jade发布了新的文献求助10
40秒前
小白完成签到,获得积分10
41秒前
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867218
求助须知:如何正确求助?哪些是违规求助? 3409471
关于积分的说明 10663754
捐赠科研通 3133679
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832968
科研通“疑难数据库(出版商)”最低求助积分说明 780510