A general convergence analysis method for evolutionary multi-objective optimization algorithm

维数之咒 插值(计算机图形学) 趋同(经济学) 数学优化 帕累托原理 多目标优化 维数(图论) 计算机科学 进化算法 算法 数学 人工智能 经济 经济增长 运动(物理) 纯数学
作者
Tie Cai,Hui Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:663: 120267-120267 被引量:4
标识
DOI:10.1016/j.ins.2024.120267
摘要

Convergence analysis of multi-objective optimization algorithm has been an area of vital interest to the research community. With this regard, a number of approaches have been proposed and studied. However, these studies and developed proposals cannot cope with more than 3-dimensional optimization problems. Generally speaking, interpolation planes are formed by 3-dimension data. So, when the dimensionality of the Pareto front is more than 3, the dimensionality of Pareto front will be reduced to 3 by involving principal component analysis. This may lead to some important data being missed. Due to missing data, the formed interpolation plane is usually inaccurate and uneven. This will give rise to difficulties to evaluate the distance between the Pareto front and the optimal Pareto front. Subsequently, it is not easy to evaluate exact convergence time and with this regard the existing solutions lack general. Having this in mind, this paper develops a general convergence analysis (GCAM) for evolutionary multi-objective optimization algorithm (EMOA). In this approach, two originality aspects come to existence: one associates with the interpolation plane convergence analysis while the second concerns the improved drift analysis of evolutionary algorithm. Firstly, for more than 3-dimensional space, the dimensionality of the Pareto front set becomes reduced to 3 through a locally linear embedding. This overcomes the irregular interpolation plane problem and produce a high-quality interpolation. Secondly, this study originally analyzes the convergence of EMOA by engaging an improved drift analysis. Finally, we determine the first stopping time of EMOA by analyzing the convergence metric. The experimental results demonstrate that the proposed method exhibits better performance in comparison with CAD, CAL, and CAC. Specifically, the error proportion of SMS-EMOA, AR-MOEA, SPEA2+SDE, GFM-MOEA has been decreased by 12%, 15%, 21%, 19% and 17%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ye完成签到 ,获得积分10
2秒前
善学以致用应助科研小白采纳,获得10
3秒前
刘星星发布了新的文献求助10
3秒前
Daily发布了新的文献求助10
3秒前
5秒前
完美世界应助单纯胡萝卜采纳,获得10
8秒前
9秒前
9秒前
Daily完成签到,获得积分10
10秒前
Ayanami发布了新的文献求助10
10秒前
ChiDaiOLD完成签到,获得积分10
11秒前
12秒前
14秒前
berry完成签到,获得积分10
14秒前
HaroldNguyen发布了新的文献求助10
14秒前
yys10l完成签到,获得积分10
15秒前
Ayanami完成签到,获得积分10
15秒前
英俊的觅波完成签到,获得积分10
16秒前
沉静的蜗牛完成签到,获得积分10
16秒前
光亮的逍遥完成签到,获得积分10
18秒前
熊宜浓发布了新的文献求助10
19秒前
李子涵发布了新的文献求助10
20秒前
向光完成签到 ,获得积分10
20秒前
刘星星完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
李健应助熊宜浓采纳,获得10
26秒前
隐形曼青应助稳重向南采纳,获得10
26秒前
lindalin发布了新的文献求助10
26秒前
小丑鱼儿完成签到 ,获得积分10
27秒前
神勇语堂发布了新的文献求助10
27秒前
细心觅风完成签到,获得积分10
29秒前
罗煜发布了新的文献求助10
29秒前
29秒前
nozero应助热心的糖豆采纳,获得200
29秒前
YY再摆烂完成签到,获得积分10
31秒前
WXY完成签到,获得积分10
32秒前
adam完成签到,获得积分10
32秒前
淡淡冬瓜完成签到,获得积分10
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380808
关于积分的说明 10515927
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707492
邀请新用户注册赠送积分活动 821774
科研通“疑难数据库(出版商)”最低求助积分说明 772947