Multimodal deep fusion model based on Transformer and multi-layer residuals for assessing the competitiveness of weeds in farmland ecosystems

变压器 生态系统 环境资源管理 环境科学 融合 生态系统服务 地理 农林复合经营 林业 生态学 工程类 生物 电气工程 语言学 哲学 电压
作者
Zhaoxia Lou,Longzhe Quan,Deng Sun,Fulin Xia,Hailong Li,Zhiming Guo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:127: 103681-103681 被引量:4
标识
DOI:10.1016/j.jag.2024.103681
摘要

Weed competitiveness monitoring is crucial for field management at specific locations. Recent research in the fusion of multimodal data from unmanned aerial vehicles (UAVs) has propelled this advancement. However, these studies merely stack extracted features equivalently, neglecting the full utilization of fused information. This study utilizes hyperspectral and LiDAR data collected by UAVs to proposes a multimodal deep fusion model (MulDFNet) using Transformer and multi-layer residuals. It utilizes a comprehensive competitive index (CCI-A) based on multidimensional phenotypes of maize to assess the competitiveness of weeds in farmland ecosystems. To validate the effectiveness of this model, a series of ablation studies were conducted involving different modalities data, with/without the Transformer Encoder (TE) modules, and different fusion modules (shallow residual fusion module, deep feature fusion module). Additionally, a comparison was made with early/late stacking fusion models, traditional machine learning models, and deep learning models from relevant studies. The results indicate that the multimodal deep fusion model utilizing HSI, VI, and CHM data achieved a predictive effect of R2 = 0.903 (RMSE = 0.078). Notably, the best performance was observed during the five-leaf stage. The combination of shallow and deep fusion modules demonstrated better predictive performance compared to a single fusion module. The positive impact of the TE module on model performance is evident, as its multi-head attention mechanism aids in better capturing the relationships and importance between feature maps and competition indices, thereby enhancing the model's predictive capability. In weed competition prediction, the multimodal deep fusion model proposed in this study has demonstrated significantly better predictive performance compared to early/late stacking fusion models and other machine learning models (RF, SVR, PLS, DNN-F2 and Multi-channel CNN). Overall, the multimodal deep fusion model developed in this study demonstrates outstanding performance in assessing weed competitiveness and can predict the competitive intensity of weeds in maize across various growth stages on a broad scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怪物时似完成签到 ,获得积分10
1秒前
moodys完成签到,获得积分10
1秒前
3秒前
舒先生完成签到,获得积分10
3秒前
大豪子完成签到 ,获得积分10
3秒前
12发布了新的文献求助10
6秒前
Akim应助细心的小鸽子采纳,获得10
8秒前
9秒前
丢丢银发布了新的文献求助10
9秒前
Owen应助kkkkkw采纳,获得10
9秒前
10秒前
桐桐应助假面绅士采纳,获得10
11秒前
Owen应助NXK采纳,获得10
13秒前
13秒前
15秒前
丢丢银完成签到,获得积分10
16秒前
冷傲雍发布了新的文献求助10
16秒前
张宏宇发布了新的文献求助10
19秒前
bkagyin应助fl采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
踏实无敌应助科研通管家采纳,获得30
20秒前
李健应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
aprilvanilla应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
aprilvanilla应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921