Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models

运动学 透视图(图形) 扩散 人行横道 行人 二进制数 数学模型 模拟 统计 计算机科学 生物系统 统计物理学 数学 人工智能 物理 运输工程 工程类 经典力学 热力学 算术 生物
作者
Marc Theisen,Caroline Schießl,Wolfgang Einhäuser,Gustav Markkula
出处
期刊:International journal of human-computer studies [Elsevier BV]
卷期号:: 103200-103200
标识
DOI:10.1016/j.ijhcs.2023.103200
摘要

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian-vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执着乐双完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
乐观的访风完成签到,获得积分10
3秒前
5秒前
叶子完成签到,获得积分10
6秒前
乔乔汀完成签到 ,获得积分10
6秒前
布谷完成签到,获得积分10
7秒前
Ogai完成签到,获得积分10
7秒前
lilac完成签到,获得积分10
8秒前
叶子发布了新的文献求助10
8秒前
CodeCraft应助来自DF的小白采纳,获得10
8秒前
田様应助拂晓采纳,获得10
8秒前
9秒前
10秒前
华华完成签到,获得积分10
11秒前
14秒前
15秒前
virgil发布了新的文献求助30
16秒前
Brian发布了新的文献求助10
18秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
ZHAO完成签到,获得积分10
21秒前
22秒前
SciGPT应助酷炫的海之采纳,获得10
22秒前
mft1989mft发布了新的文献求助10
22秒前
乐乐应助血小板采纳,获得20
24秒前
25秒前
爱科研的光催人完成签到,获得积分10
26秒前
Akim应助Green采纳,获得10
26秒前
张明灿完成签到,获得积分20
26秒前
幸运的小子完成签到,获得积分10
27秒前
Akim应助Milo采纳,获得10
28秒前
29秒前
CodeCraft应助大观天下采纳,获得10
29秒前
30秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876383
求助须知:如何正确求助?哪些是违规求助? 3418962
关于积分的说明 10711152
捐赠科研通 3143541
什么是DOI,文献DOI怎么找? 1734433
邀请新用户注册赠送积分活动 836806
科研通“疑难数据库(出版商)”最低求助积分说明 782823