Identifying Regenerated Saplings by Stratifying Forest Overstory Using Airborne LiDAR Data

下层林 天蓬 激光雷达 均方误差 环境科学 牙冠(牙科) 遥感 树冠 植被(病理学) 林业 激光扫描 树(集合论) 地理 数学 生态学 统计 生物 激光器 数学分析 物理 光学 病理 牙科 医学
作者
Liming Du,Yong Pang
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:6 被引量:7
标识
DOI:10.34133/plantphenomics.0145
摘要

Identifying the spatiotemporal distributions and phenotypic characteristics of understory saplings is beneficial in exploring the internal mechanisms of plant regeneration and providing technical assistances for continues cover forest management. However, it is challenging to detect the understory saplings using 2-dimensional (2D) spectral information produced by conventional optical remotely sensed data. This study proposed an automatic method to detect the regenerated understory saplings based on the 3D structural information from aerial laser scanning (ALS) data. By delineating individual tree crown using the improved spectral clustering algorithm, we successfully removed the overstory canopy and associated trunk points. Then, individual understory saplings were segmented using an adaptive-mean-shift-based clustering algorithm. This method was tested in an experimental forest farm of North China. Our results showed that the detection rates of understory saplings ranged from 94.41% to 152.78%, and the matching rates increased from 62.59% to 95.65% as canopy closure went down. The ALS-based sapling heights well captured the variations of field measurements [ R 2 = 0.71, N = 3,241, root mean square error (RMSE) = 0.26 m, P < 0.01] and terrestrial laser scanning (TLS)-based measurements ( R 2 = 0.78, N =443, RMSE = 0.23 m, P < 0.01). The ALS-based sapling crown width was comparable with TLS-based measurements ( R 2 = 0.64, N = 443, RMSE = 0.24 m). This study provides a solution for the quantification of understory saplings, which can be used to improve forest ecosystem resilence through regulating the dynamics of forest gaps to better utilize light resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李一来完成签到,获得积分10
1秒前
殷勤的可兰完成签到,获得积分10
3秒前
大个应助cstp采纳,获得10
4秒前
NexusExplorer应助neurospine采纳,获得10
5秒前
Mayday发布了新的文献求助10
7秒前
姜姜发布了新的文献求助10
9秒前
9秒前
11秒前
若雨凌风应助奥特波顿采纳,获得20
11秒前
月落南山完成签到,获得积分10
13秒前
13秒前
123完成签到,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
西北发布了新的文献求助10
18秒前
von发布了新的文献求助10
18秒前
QQ完成签到,获得积分10
19秒前
19秒前
小黄崽汁发布了新的文献求助10
20秒前
咋桌就咋桌完成签到,获得积分10
20秒前
Lee完成签到 ,获得积分10
21秒前
22秒前
zhang发布了新的文献求助10
22秒前
SciGPT应助Mine采纳,获得10
23秒前
科研通AI2S应助12345采纳,获得10
23秒前
liz完成签到 ,获得积分10
24秒前
脑洞疼应助机灵的冷之采纳,获得10
26秒前
26秒前
27秒前
27秒前
开心的桔子完成签到 ,获得积分10
28秒前
辣子鸡发布了新的文献求助10
28秒前
研友_ZeoKYL完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870623
求助须知:如何正确求助?哪些是违规求助? 3412797
关于积分的说明 10681034
捐赠科研通 3137224
什么是DOI,文献DOI怎么找? 1730697
邀请新用户注册赠送积分活动 834310
科研通“疑难数据库(出版商)”最低求助积分说明 781133