FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols using Active Learning

过度拟合 计算机科学 时间轴 协议(科学) 工作流程 机器学习 数学 数据库 人工神经网络 医学 统计 病理 替代医学
作者
César de Oliveira,Karl Leswing,Shulu Feng,R. P. F. Kanters,Robert Abel,Sathesh Bhat
标识
DOI:10.26434/chemrxiv-2023-vv5cq
摘要

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ~1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the a) relatively large parameter space to be explored, b) significant compute requirements, and c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses active learning to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active learning process, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
1秒前
彭于晏应助yeyongchang_hit采纳,获得10
1秒前
111完成签到,获得积分10
3秒前
吴十一发布了新的文献求助10
4秒前
清秀的绮晴完成签到,获得积分10
4秒前
赘婿应助fanhuam采纳,获得10
4秒前
5秒前
科研通AI5应助znchick采纳,获得20
6秒前
7秒前
7秒前
lin应助Yh采纳,获得30
7秒前
SciGPT应助洁净灭男采纳,获得10
7秒前
coolru发布了新的文献求助10
9秒前
10秒前
10秒前
李李李发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
自觉的满天完成签到,获得积分10
13秒前
14秒前
ZD发布了新的文献求助10
14秒前
15秒前
Jasper应助张宗耀采纳,获得10
15秒前
见素发布了新的文献求助10
16秒前
JJ发布了新的文献求助10
17秒前
直率新柔发布了新的文献求助10
17秒前
李某发布了新的文献求助10
17秒前
搜集达人应助热情采纳,获得10
18秒前
Sara发布了新的文献求助10
19秒前
19秒前
xjcy发布了新的文献求助10
20秒前
失眠的香菇完成签到 ,获得积分10
20秒前
开心小咕噜完成签到,获得积分10
20秒前
汉堡包应助03EG采纳,获得50
21秒前
Jasper应助ljx采纳,获得10
22秒前
科研通AI5应助吴十一采纳,获得10
22秒前
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794759
求助须知:如何正确求助?哪些是违规求助? 3339605
关于积分的说明 10296669
捐赠科研通 3056347
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804963
科研通“疑难数据库(出版商)”最低求助积分说明 762244