Predicting microbial community compositions in wastewater treatment plants using artificial neural networks

生物 微生物种群生物学 微生物生态学 生态学 污水处理 废水 相对物种丰度 丰度(生态学) 环境工程 细菌 环境科学 遗传学
作者
Xiaonan Liu,Yong Nie,Xiao‐Lei Wu
出处
期刊:Microbiome [Springer Nature]
卷期号:11 (1): 93-93 被引量:41
标识
DOI:10.1186/s40168-023-01519-9
摘要

Abstract Background Activated sludge (AS) of wastewater treatment plants (WWTPs) is one of the world’s largest artificial microbial ecosystems and the microbial community of the AS system is closely related to WWTPs' performance. However, how to predict its community structure is still unclear. Results Here, we used artificial neural networks (ANN) to predict the microbial compositions of AS systems collected from WWTPs located worldwide. The predictive accuracy R 2 1:1 of the Shannon–Wiener index reached 60.42%, and the average R 2 1:1 of amplicon sequence variants (ASVs) appearing in at least 10% of samples and core taxa were 35.09% and 42.99%, respectively. We also found that the predictability of ASVs was significantly positively correlated with their relative abundance and occurrence frequency, but significantly negatively correlated with potential migration rate. The typical functional groups such as nitrifiers, denitrifiers, polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), and filamentous organisms in AS systems could also be well recovered using ANN models, with R 2 1:1 ranging from 32.62% to 56.81%. Furthermore, we found that whether industry wastewater source contained in inflow (IndConInf) had good predictive abilities, although its correlation with ASVs in the Mantel test analysis was weak, which suggested important factors that cannot be identified using traditional methods may be highlighted by the ANN model. Conclusions We demonstrated that the microbial compositions and major functional groups of AS systems are predictable using our approach, and IndConInf has a significant impact on the prediction. Our results provide a better understanding of the factors affecting AS communities through the prediction of the microbial community of AS systems, which could lead to insights for improved operating parameters and control of community structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的小兔子完成签到,获得积分10
刚刚
科研通AI2S应助djbj2022采纳,获得10
1秒前
雨田发布了新的文献求助10
2秒前
科研通AI6应助小透明采纳,获得10
5秒前
科研通AI6应助小透明采纳,获得10
5秒前
one应助小透明采纳,获得10
5秒前
科研通AI6应助小透明采纳,获得50
5秒前
科研通AI6应助小透明采纳,获得10
5秒前
yznfly应助小透明采纳,获得100
5秒前
无魇应助小透明采纳,获得100
5秒前
量子星尘发布了新的文献求助10
7秒前
在水一方应助踟蹰采纳,获得10
7秒前
香蕉觅云应助平平采纳,获得10
7秒前
西西完成签到,获得积分10
7秒前
9秒前
lizike完成签到,获得积分10
9秒前
小马甲应助郭晓丽采纳,获得10
9秒前
10秒前
11秒前
方超完成签到,获得积分10
11秒前
Zoe完成签到,获得积分10
12秒前
SciGPT应助wwww采纳,获得10
12秒前
12秒前
gggggd完成签到,获得积分10
13秒前
15秒前
jasonhmd完成签到,获得积分10
16秒前
16秒前
cf2v完成签到 ,获得积分0
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
小桃子应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
18秒前
科目三应助科研通管家采纳,获得10
18秒前
三冬四夏完成签到 ,获得积分10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451560
求助须知:如何正确求助?哪些是违规求助? 4559313
关于积分的说明 14273187
捐赠科研通 4483296
什么是DOI,文献DOI怎么找? 2455445
邀请新用户注册赠送积分活动 1446234
关于科研通互助平台的介绍 1422280