Artificial Intelligence–Based Psoriasis Severity Assessment: Real-world Study and Application

银屑病面积及严重程度指数 银屑病 页眉 人工智能 公制(单位) 医学 计算机科学 机器学习 皮肤病科 工程类 计算机网络 运营管理
作者
Kai Huang,Xian Wu,Yixin Li,Chengzhi Lv,Yangtian Yan,Zhe Wu,Mi Zhang,Weihong Huang,Zixi Jiang,Kun Hu,Mingjia Li,Juan Su,Wu Zhu,Fangfang Li,Mingliang Chen,Jing Chen,Yongjian Li,Mei Zeng,Jianjian Zhu,Duling Cao,Xing Huang,Lei Huang,Xing Hu,Zeyu Chen,Jian Kang,Lei Yuan,Chengji Huang,Rui Guo,Alexander A. Navarini,Yehong Kuang,Xiang Chen,Shuang Zhao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e44932-e44932 被引量:18
标识
DOI:10.2196/44932
摘要

Background Psoriasis is one of the most frequent inflammatory skin conditions and could be treated via tele-dermatology, provided that the current lack of reliable tools for objective severity assessments is overcome. Psoriasis Area and Severity Index (PASI) has a prominent level of subjectivity and is rarely used in real practice, although it is the most widely accepted metric for measuring psoriasis severity currently. Objective This study aimed to develop an image–artificial intelligence (AI)–based validated system for severity assessment with the explicit intention of facilitating long-term management of patients with psoriasis. Methods A deep learning system was trained to estimate the PASI score by using 14,096 images from 2367 patients with psoriasis. We used 1962 patients from January 2015 to April 2021 to train the model and the other 405 patients from May 2021 to July 2021 to validate it. A multiview feature enhancement block was designed to combine vision features from different perspectives to better simulate the visual diagnostic method in clinical practice. A classification header along with a regression header was simultaneously applied to generate PASI scores, and an extra cross-teacher header after these 2 headers was designed to revise their output. The mean average error (MAE) was used as the metric to evaluate the accuracy of the predicted PASI score. By making the model minimize the MAE value, the model becomes closer to the target value. Then, the proposed model was compared with 43 experienced dermatologists. Finally, the proposed model was deployed into an app named SkinTeller on the WeChat platform. Results The proposed image-AI–based PASI-estimating model outperformed the average performance of 43 experienced dermatologists with a 33.2% performance gain in the overall PASI score. The model achieved the smallest MAE of 2.05 at 3 input images by the ablation experiment. In other words, for the task of psoriasis severity assessment, the severity score predicted by our model was close to the PASI score diagnosed by experienced dermatologists. The SkinTeller app has been used 3369 times for PASI scoring in 1497 patients from 18 hospitals, and its excellent performance was confirmed by a feedback survey of 43 dermatologist users. Conclusions An image-AI–based psoriasis severity assessment model has been proposed to automatically calculate PASI scores in an efficient, objective, and accurate manner. The SkinTeller app may be a promising alternative for dermatologists’ accurate assessment in the real world and chronic disease self-management in patients with psoriasis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得50
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
Steven发布了新的文献求助10
12秒前
15秒前
15秒前
乐乐应助阔达衬衫采纳,获得10
17秒前
19秒前
小高同学发布了新的文献求助10
19秒前
昏睡的蟠桃给TrinhTran2001的求助进行了留言
19秒前
科研小民工应助黄小北采纳,获得200
20秒前
CodeCraft应助dff采纳,获得10
23秒前
温暖书文应助nemo采纳,获得10
26秒前
踏实采波完成签到,获得积分10
26秒前
锦秋发布了新的文献求助30
26秒前
dff完成签到,获得积分10
29秒前
谷安完成签到,获得积分10
31秒前
Friday发布了新的文献求助10
31秒前
Owen应助Li采纳,获得10
32秒前
33秒前
hanliulaixi发布了新的文献求助10
33秒前
bkagyin应助小高同学采纳,获得10
37秒前
无奈鞯完成签到,获得积分20
38秒前
bkagyin应助清茶韵心采纳,获得10
39秒前
Friday完成签到,获得积分20
39秒前
pluto应助科研小破白菜采纳,获得20
43秒前
北方完成签到,获得积分10
43秒前
43秒前
44秒前
轻松凝梦发布了新的文献求助10
46秒前
默默雨竹发布了新的文献求助10
47秒前
科研通AI2S应助kukudou2采纳,获得10
50秒前
大模型应助默默小鸽子采纳,获得10
52秒前
饺子完成签到,获得积分10
54秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385