Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data

计算机科学 聚类分析 人工智能 成对比较 约束(计算机辅助设计) 稳健性(进化) 特征学习 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 数学 生物化学 化学 语言学 几何学 哲学 基因
作者
Yanglan Gan,Yuhan Chen,Guangwei Xu,Wenjing Guo,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:3
标识
DOI:10.1093/bib/bbad222
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/DBLABDHU/scDECL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的绿真完成签到 ,获得积分10
1秒前
hui发布了新的文献求助10
1秒前
一只东北鸟完成签到 ,获得积分10
1秒前
1秒前
3秒前
多情方盒完成签到,获得积分10
3秒前
热沙来提完成签到,获得积分20
4秒前
马騳骉完成签到,获得积分10
4秒前
卷大喵发布了新的文献求助10
7秒前
淡然士晋发布了新的文献求助10
7秒前
三愿完成签到 ,获得积分10
7秒前
10秒前
BONe完成签到,获得积分10
12秒前
研友_CCQ_M完成签到,获得积分10
13秒前
科研通AI5应助hui采纳,获得10
13秒前
BONe发布了新的文献求助10
14秒前
TT2022发布了新的文献求助10
15秒前
赘婿应助yangching采纳,获得10
16秒前
搜集达人应助成诗怡采纳,获得10
17秒前
不甜完成签到 ,获得积分10
18秒前
18秒前
李健应助yeyii采纳,获得10
19秒前
21秒前
23秒前
23秒前
yige发布了新的文献求助10
23秒前
24秒前
淡然士晋完成签到,获得积分10
25秒前
暗月皇发布了新的文献求助10
25秒前
糊涂的元珊完成签到 ,获得积分10
25秒前
Mry完成签到,获得积分10
26秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
29秒前
日出发布了新的文献求助10
29秒前
成诗怡发布了新的文献求助10
29秒前
KXC完成签到,获得积分20
29秒前
huahua完成签到 ,获得积分10
32秒前
田様应助Oasis采纳,获得10
32秒前
阳光完成签到,获得积分10
34秒前
冲冲冲完成签到,获得积分10
34秒前
暖羊羊Y完成签到 ,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734