化学
质谱成像
吡啶
质谱法
生物分子
基质辅助激光解吸/电离
衍生化
马尔迪成像
色谱法
生物化学
解吸
有机化学
吸附
作者
Hao Zhou,Jie Yuan,Jianfeng Xu,Yang Wang,Pei Xiong,Guode Zhao,X. S. Jiang,Ying Peng,Yang Ye,Gang Cheng,Jiang Zheng,Jia Liu
标识
DOI:10.1021/acs.analchem.4c01147
摘要
The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI