已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 哲学 语言学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109204-109204
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助武雨寒采纳,获得10
2秒前
fin完成签到 ,获得积分10
2秒前
Hello应助leslie采纳,获得10
5秒前
传奇3应助犹豫冰淇淋采纳,获得10
7秒前
7秒前
奈何应助kimon采纳,获得10
9秒前
sum完成签到 ,获得积分20
10秒前
顺利的寒云完成签到 ,获得积分10
10秒前
酷酷的汉堡完成签到,获得积分10
12秒前
科研通AI5应助Yangzx采纳,获得10
12秒前
TSWAKS发布了新的文献求助10
13秒前
15秒前
16秒前
leslie发布了新的文献求助10
20秒前
武雨寒发布了新的文献求助10
21秒前
22秒前
22秒前
小二郎应助日日是春日采纳,获得10
23秒前
李健的小迷弟应助张jy采纳,获得10
26秒前
小蘑菇应助胡诗剑采纳,获得10
27秒前
30秒前
32秒前
32秒前
35秒前
小白又鹏发布了新的文献求助10
35秒前
宴之思完成签到,获得积分10
36秒前
36秒前
36秒前
37秒前
Yangzx发布了新的文献求助10
38秒前
FashionBoy应助尛森采纳,获得10
38秒前
Dream完成签到,获得积分10
39秒前
39秒前
张jy发布了新的文献求助10
40秒前
2568269431发布了新的文献求助10
40秒前
sensAn发布了新的文献求助10
40秒前
阳光飞槐完成签到,获得积分10
41秒前
啥也不会完成签到,获得积分10
43秒前
grace完成签到,获得积分10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646