Lightweight medical image segmentation network with multi-scale feature-guided fusion

人工智能 计算机科学 特征(语言学) 比例(比率) 分割 计算机视觉 图像融合 图像(数学) 图像分割 模式识别(心理学) 融合 地图学 地理 语言学 哲学
作者
Zhiqin Zhu,Kun Yu,Guanqiu Qi,Baisen Cong,Yuanyuan Li,Zexin Li,Xinbo Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:182: 109204-109204 被引量:31
标识
DOI:10.1016/j.compbiomed.2024.109204
摘要

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
等待的鱼完成签到,获得积分10
刚刚
1秒前
ding应助加百莉采纳,获得10
2秒前
4秒前
浩然发布了新的文献求助10
4秒前
Annie发布了新的文献求助50
4秒前
阿斯师大完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
5秒前
5秒前
顾矜应助qdd采纳,获得10
6秒前
在水一方应助miya采纳,获得10
7秒前
xuerkk完成签到,获得积分10
8秒前
桐桐应助端庄的如花采纳,获得10
8秒前
uuinn发布了新的文献求助10
9秒前
9秒前
9秒前
里予完成签到,获得积分10
9秒前
10秒前
星辰大海应助evil采纳,获得10
11秒前
11秒前
哈哈姐应助超帅的豪英采纳,获得10
12秒前
李爱国应助xuerkk采纳,获得10
13秒前
14秒前
777发布了新的文献求助30
14秒前
老中医发布了新的文献求助10
14秒前
Annie完成签到,获得积分10
15秒前
16秒前
Baobao应助里予采纳,获得10
16秒前
17秒前
17秒前
17秒前
杨小二发布了新的文献求助10
18秒前
19秒前
uuinn完成签到,获得积分10
19秒前
青栀发布了新的文献求助10
20秒前
qdd发布了新的文献求助10
22秒前
23秒前
serein发布了新的文献求助10
24秒前
王瑞华发布了新的文献求助10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088842
求助须知:如何正确求助?哪些是违规求助? 3627556
关于积分的说明 11501967
捐赠科研通 3340306
什么是DOI,文献DOI怎么找? 1836275
邀请新用户注册赠送积分活动 904291
科研通“疑难数据库(出版商)”最低求助积分说明 822208