亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time detection system for polishing metal surface defects based on convolutional feature concentration and activation network

增采样 计算机科学 特征(语言学) 人工智能 抛光 模式识别(心理学) 卷积神经网络 计算机视觉 材料科学 图像(数学) 语言学 哲学 复合材料
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Lie Zhang,Hailun Zuo,You-wei Xu,Kang Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:257: 125041-125041
标识
DOI:10.1016/j.eswa.2024.125041
摘要

This study aims to improve the accuracy and efficiency of detecting defects on polished metal surfaces by developing a new detection system. A network model explicitly designed for detecting defects on polished metal surfaces and a convolutional feature concentration and activation network (CFCANet) are proposed in this paper. This model significantly enhances the recognition of tiny defects by introducing a small-target detection head, ensuring high-precision detection results. In addition, the feature concentration and activation (FCA-C2f) module proposed in this study enhances the model's sensitivity to anisotropic features, thereby improving defect detection accuracy. The content-aware reassembly of features (CARAFE) upsampling algorithm is used instead of traditional nearest-neighbour interpolation methods to effectively preserve detailed information and improve the quality and efficiency of upsampling. By optimising the lighting conditions and using composite light source illumination technology, the probabilities of missed detections and false alarms can be reduced. Combined with the CFCANet detection network, the defect detection performance of the proposed method on polished metal surfaces is effectively enhanced. To validate the effectiveness of the proposed method, a new dataset for detecting defects on polished metal surfaces, PMS-DET, was constructed in this study and validated on the NEU-DET dataset. Experimental results show that CFCANet effectively improves the defect detection accuracy on polished metal surfaces, achieving a mAP0.5:0.95 value of 42.4 % on the PMS-DET dataset, an increase of 11.9 %. The model parameters are reduced by 6.7 %, and the detection speed is improved by 28.1 %. Compared with existing detection models, this research method demonstrates significant improvements in detection accuracy, model size and computational efficiency, especially regarding GFLOPs and detection speed, proving its potential application value in practical industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
12秒前
lishi发布了新的文献求助10
19秒前
19秒前
lishi完成签到,获得积分10
29秒前
zsssssh完成签到,获得积分10
34秒前
pinklay完成签到 ,获得积分10
43秒前
1分钟前
健康的大船完成签到 ,获得积分10
1分钟前
自信的半凡完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
领导范儿应助自信的半凡采纳,获得10
1分钟前
L_MD完成签到,获得积分10
1分钟前
qqq完成签到,获得积分10
2分钟前
SASI完成签到 ,获得积分10
2分钟前
woshiwuziq完成签到 ,获得积分10
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
火星仙人掌完成签到 ,获得积分10
2分钟前
刻苦的小土豆完成签到 ,获得积分10
2分钟前
Parotodus完成签到,获得积分10
3分钟前
鱼饼完成签到 ,获得积分10
3分钟前
3分钟前
mmll发布了新的文献求助10
3分钟前
所所应助mmll采纳,获得10
3分钟前
Titi发布了新的文献求助10
3分钟前
Artin完成签到,获得积分10
3分钟前
怕黑鲂完成签到 ,获得积分10
3分钟前
大模型应助Sakura采纳,获得10
4分钟前
weilei完成签到,获得积分10
4分钟前
Owen应助WWZ采纳,获得10
4分钟前
VDC应助WQY采纳,获得30
4分钟前
4分钟前
Sakura发布了新的文献求助10
4分钟前
VDC完成签到,获得积分0
4分钟前
Arthur完成签到 ,获得积分10
4分钟前
4分钟前
WWZ发布了新的文献求助10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782649
求助须知:如何正确求助?哪些是违规求助? 3328049
关于积分的说明 10234269
捐赠科研通 3043003
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971