A Fault Detection of Aero-engine Rolling Bearings based on CNN-BiLSTM Network Integrated Cross-Attention

计算机科学 断层(地质) 方位(导航) 故障检测与隔离 人工智能 汽车工程 模式识别(心理学) 工程类 地质学 地震学 执行机构
作者
Zhilei Jiang,Yang Li,Jinke Gao,Chengpu Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (12): 126116-126116 被引量:2
标识
DOI:10.1088/1361-6501/ad7622
摘要

Abstract Aero-engine rolling bearings are essential for engine health, in which disruptive failures can be prevented and reduce great losses in air flight. To improve the efficiency of fault detection, an improved network, named CNN- BiLSTM -Cross-Attention (CBLCA) was proposed. The Bidirectional Long Short-Term Memory (BiLSTM) layer captures the temporal features as the input data. The cross-attention mechanism is integrated with the Convolutional neural networks (CNN) layer and the BiLSTM layer respectively. More important feature information can be identified with the CBLCA model. The proposed model was also validated with the open-sourced aero-engine rolling bearings data set. To improve the identification accuracy, a novel method that combines fast Fourier transform and Variational mode decomposition is used for the data preprocessing. Each original signal sample is transformed into a feature set containing richer information, and the number of features significantly increased in the entire dataset. Compared with some existing LSTM models, such as LSTM, BiLSTM, CNN-BiLSTM, and CNN-LSTM, the classification accuracy was increased by 55%, 54%, 5%, and 7%, respectively. The processing method for vibration signals and the CBLCA model can improve the accuracy and reliability of fault diagnosis for aero-engine rolling bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111完成签到,获得积分10
2秒前
ZHAO完成签到,获得积分10
2秒前
demoliu发布了新的文献求助10
4秒前
江湖笑发布了新的文献求助10
4秒前
minyan发布了新的文献求助10
6秒前
Danielle完成签到,获得积分10
8秒前
sciDoge应助陈文清采纳,获得10
9秒前
月半完成签到,获得积分10
9秒前
9秒前
11秒前
小巧的柏柳完成签到 ,获得积分10
12秒前
13秒前
科研通AI2S应助demoliu采纳,获得10
14秒前
犇骉发布了新的文献求助10
14秒前
Lyl34关注了科研通微信公众号
15秒前
16秒前
juziyaya完成签到,获得积分10
16秒前
研友_VZG7GZ应助如风随水采纳,获得10
18秒前
英姑应助韶华舞光年采纳,获得10
18秒前
CipherSage应助张资阳采纳,获得10
20秒前
鬼小妞nice完成签到 ,获得积分10
20秒前
21秒前
科目三应助虚心烨磊采纳,获得10
21秒前
徐子扬完成签到,获得积分10
22秒前
22秒前
汉堡包应助jitanxiang采纳,获得10
23秒前
英俊的铭应助小黄人采纳,获得10
23秒前
好纠结完成签到 ,获得积分10
25秒前
26秒前
小马甲应助浅陌采纳,获得10
26秒前
徐子扬发布了新的文献求助10
26秒前
江湖笑完成签到,获得积分10
29秒前
如风随水发布了新的文献求助10
31秒前
开心罡完成签到 ,获得积分10
32秒前
赵李艺完成签到 ,获得积分10
32秒前
张巨锋完成签到 ,获得积分10
32秒前
32秒前
mz完成签到 ,获得积分10
33秒前
gu完成签到,获得积分10
35秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642