Highly Sensitive Biosensors Based on All-PEDOT:PSS Organic Electrochemical Transistors with Laser-Induced Micropatterning

佩多:嘘 材料科学 生物传感器 纳米技术 抗坏血酸 光电子学 晶体管 电极 电压 电气工程 化学 图层(电子) 食品科学 工程类 物理化学
作者
Seong Yeon Park,Seo Yeong Son,Inwoo Lee,Hyuck-Jin Nam,Boeun Ryu,Sejung Park,Changhun Yun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (35): 46664-46676 被引量:9
标识
DOI:10.1021/acsami.4c05791
摘要

Recent advances in numerous biological applications have increased the accuracy of monitoring the level of biologically significant analytes in the human body to manage personal nutrition and physiological conditions. However, despite promising reports about costly wearable devices with high sensing performance, there has been a growing demand for inexpensive sensors that can quickly detect biological molecules. Herein, we present highly sensitive biosensors based on organic electrochemical transistors (OECTs), which are types of organic semiconductor-based sensors that operate consistently at low operating voltages in aqueous solutions. Instead of the gold or platinum electrode used in current electrochemical devices, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was used as both the channel and gate electrodes in the OECT. Additionally, to overcome the patterning resolution limitations of conventional solution processing, we confirmed that the irradiation of a high-power IR laser (λ = 1064 nm) onto the coated PEDOT:PSS film was able to produce spatially resolvable micropatterns in a digital-printing manner. The proposed patterning technique exhibits high suitability for the fabrication of all-PEDOT:PSS OECT devices. The device geometry was optimized by fine-tuning the gate area and the channel-to-gate distance. Consequently, the sensor for detecting ascorbic acid (vitamin C) concentrations in an electrolyte exhibited the best sensitivity of 125 μA dec-1 with a limit of detection of 1.3 μM, which is nearly 2 orders of magnitude higher than previous findings. Subsequently, an all-plastic flexible epidermal biosensor was established by transferring the patterned all-PEDOT:PSS OECT from a glass substrate to a PET substrate, taking full advantage of the flexibility of PEDOT:PSS. The prepared all-plastic sensor device is highly cost-effective and suitable for single-use applications because of its acceptable sensing performance and reliable signal for detecting vitamin C. Additionally, the epidermal sensor successfully obtained the temporal profile of vitamin C in the sweat of a human volunteer after the consumption of vitamin C drinks. We believe that the highly sensitive all-PEDOT:PSS OECT device fabricated using the accurate patterning process exhibits versatile potential as a low-cost and single-use biosensor for emerging bioelectronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
妩媚的海应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
妩媚的海应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770404
求助须知:如何正确求助?哪些是违规求助? 5584883
关于积分的说明 15424186
捐赠科研通 4904015
什么是DOI,文献DOI怎么找? 2638456
邀请新用户注册赠送积分活动 1586286
关于科研通互助平台的介绍 1541405