Atomistic mechanism of high ionic conductivity in lithium ytterbium-based halide solid electrolytes: A first-principles study

卤化物 离子电导率 锂(药物) 电解质 正交晶系 离子键合 快离子导体 材料科学 电化学 无机化学 密度泛函理论 化学物理 化学 离子 物理化学 结晶学 计算化学 晶体结构 电极 有机化学 医学 内分泌学
作者
Limin Wang,Xiao Wei,Lu Sun,Rong Yang,Jinqiu Yu,Ligen Wang
出处
期刊:Journal of Rare Earths [Elsevier BV]
卷期号:42 (1): 155-162 被引量:6
标识
DOI:10.1016/j.jre.2023.01.013
摘要

As the next generation of commercial automotive power batteries begins replacing liquid lithium batteries, many look towards all-solid-state batteries to pioneer the future. All-solid-state batteries have attracted the attention of countless researchers around the world because of their high safety and high energy density. In recent times, halide solid-state electrolytes have become a research hotspot within solid-state electrolytes because of their potentially superior properties. In this paper, in the framework of DFT, we investigated the atomic mechanisms of improving the ionic conductivity and stability of Li3YbCl6. Our calculations show that both trigonal and orthorhombic Li3YbCl6 exhibit wide electrochemical windows and metastable properties (100 meV/atom > Ehull > 0 meV/atom). However, the orthorhombic Li3YbCl6 can be stabilized at high temperatures by taking the vibrational entropy into account, which is supported by the experimental results. Moreover, it is expected that because of the Yb/Li synergistic interactions that, due to their strong mutual coulomb repulsion, influence the Li+ transport behavior, the orthorhombic Li3YbCl6 might have superior ionic conductivities with appropriate Li + migration paths determined by the Yb3+ distribution. Also, higher ionic conductivities can be obtained by regulating the random distribution of Li+ ions. Further Li+-deficiency can also largely increase the ionic conductivity by invoking vacancies. This study helps gain a deeper understanding of the laws that govern ionic conductivities and stabilities and provides a certain theoretical reference for the experimental development and design of halide solid-state electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
2秒前
Wang发布了新的文献求助10
2秒前
五月完成签到 ,获得积分10
3秒前
back you up应助科研通管家采纳,获得50
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
qzp完成签到 ,获得积分10
16秒前
17秒前
娇娇大王完成签到,获得积分10
20秒前
24秒前
John完成签到 ,获得积分10
25秒前
科研完成签到,获得积分10
26秒前
28秒前
28秒前
lx完成签到,获得积分10
29秒前
柠檬要加冰完成签到 ,获得积分10
29秒前
清秀的之桃完成签到 ,获得积分10
31秒前
顺利毕业mpa完成签到,获得积分10
31秒前
拉长的青筠完成签到,获得积分10
31秒前
聪慧芷巧发布了新的文献求助10
32秒前
xmqaq完成签到,获得积分10
34秒前
35秒前
小幸运R完成签到 ,获得积分10
38秒前
小破网完成签到 ,获得积分0
39秒前
42秒前
灵寒完成签到 ,获得积分10
49秒前
小李找文献完成签到 ,获得积分10
53秒前
54秒前
FUNG完成签到 ,获得积分10
1分钟前
ycc完成签到,获得积分10
1分钟前
纷纷完成签到 ,获得积分10
1分钟前
晨晨完成签到 ,获得积分10
1分钟前
鲁滨逊完成签到 ,获得积分10
1分钟前
小伊001完成签到,获得积分10
1分钟前
东风完成签到,获得积分10
1分钟前
doreen完成签到 ,获得积分10
1分钟前
1分钟前
余味完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336794
关于积分的说明 10282208
捐赠科研通 3053626
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803659
科研通“疑难数据库(出版商)”最低求助积分说明 761495