Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states

生成语法 动能 生成模型 人工智能 计算机科学 机器学习 物理 经典力学
作者
Subham Choudhury,Bharath Narayanan,Michaël Moret,Vassily Hatzimanikatis,Ljubiša Mišković
标识
DOI:10.1101/2023.02.21.529387
摘要

Abstract Generating large omics datasets has become routine practice to gain insights into cellular processes, yet deciphering such massive datasets and determining intracellular metabolic states remains challenging. Kinetic models of metabolism play a critical role in integrating omics data, as they provide explicit connections between metabolite concentrations, metabolic fluxes, and enzyme levels. Nevertheless, the challenges associated with determining the kinetic parameters that underlie cellular physiology pose significant obstacles to the broader acceptance and adoption of these models within the research community. Here, we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration and consolidation of diverse omics data and other relevant information, like extracellular medium composition, physicochemical data, and expertise of domain specialists, we show that the proposed framework accurately characterizes unknown intracellular metabolic states, including metabolic fluxes and metabolite concentrations in E. coli ’s metabolic network. Moreover, we show that RENAISSANCE successfully estimates missing kinetic parameters and reconciles them with sparse and noisy experimental data, resulting in a substantial reduction in parameter uncertainty and a notable improvement in the accuracy and reliability of the parameter estimates. The proposed framework will be invaluable for researchers who seek to analyze metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
归尘完成签到,获得积分10
3秒前
科研通AI5应助Guoqiang采纳,获得30
4秒前
思源应助张益达采纳,获得10
5秒前
5秒前
打打应助橙子abcy采纳,获得10
6秒前
鱼鱼鱼发布了新的文献求助10
8秒前
Drlinger完成签到 ,获得积分10
8秒前
8秒前
NexusExplorer应助欢呼平灵采纳,获得10
9秒前
十年HLX完成签到 ,获得积分10
9秒前
百川完成签到,获得积分10
10秒前
14秒前
汉堡包应助wing采纳,获得10
14秒前
青鸟飞鱼完成签到,获得积分10
15秒前
Zhao完成签到 ,获得积分10
15秒前
lightman完成签到,获得积分10
17秒前
小二郎应助cgs采纳,获得10
18秒前
lay完成签到,获得积分10
19秒前
橙子abcy发布了新的文献求助10
20秒前
有终完成签到 ,获得积分10
21秒前
23秒前
23秒前
23秒前
后撤步的大魔王完成签到,获得积分10
24秒前
传奇3应助鱼鱼鱼采纳,获得10
24秒前
图图完成签到,获得积分10
24秒前
昨日无风完成签到,获得积分10
24秒前
24秒前
26秒前
动漫大师发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
不倦应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
28秒前
科目三应助十七采纳,获得10
28秒前
野性的凡蕾完成签到,获得积分10
28秒前
zjz发布了新的文献求助10
28秒前
jenningseastera应助阿辉采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825