Targeted Learning

统计推断 估计员 计算机科学 观察研究 因果推理 机器学习 对比度(视觉) 数据科学 推论 人工智能 统计假设检验 心理学 统计 数学
作者
Jeremy Coyle,Nima S. Hejazi,Ivana Malenica,Rachael V. Phillips,Benjamin F. Arnold,Andrew Mertens,Jade Benjamin‐Chung,Weixin Cai,Sonali Dayal,John M. Colford,Alan Hubbard,Mark J. van der Laan
出处
期刊:Wiley StatsRef: Statistics Reference Online 卷期号:: 1-20 被引量:4
标识
DOI:10.1002/9781118445112.stat08414
摘要

Abstract Targeted Learning is a subfield of statistics that unifies advances in causal inference, machine learning, and statistical theory to help answer scientifically impactful questions with statistical confidence. Targeted Learning is driven by complex problems in data science and has been implemented in a diversity of real‐world scenarios: observational studies with missing treatments and outcomes, personalized interventions, longitudinal settings with time‐varying treatment regimes, survival analysis, adaptive randomized trials, mediation analysis, and networks of connected subjects. In contrast to the (mis)application of restrictive modeling strategies that dominate the current practice of statistics, Targeted Learning establishes a principled standard for statistical estimation and inference (i.e., confidence intervals and p ‐values). This multiple robust approach is accompanied by a guiding roadmap and a burgeoning software ecosystem, both of which provide guidance on the construction of estimators optimized to best answer the motivating question. The roadmap of Targeted Learning emphasizes tailoring statistical procedures so as to minimize their assumptions, carefully grounding them only in the scientific knowledge available. The end result is a framework that honestly reflects the uncertainty in both the background knowledge and the available data in order to draw reliable conclusions from statistical analyses – ultimately enhancing the reproducibility and rigor of scientific findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得30
刚刚
一一应助科研通管家采纳,获得10
刚刚
孙燕应助科研通管家采纳,获得10
1秒前
1秒前
一一应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
曦子曦子应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助odid采纳,获得10
2秒前
2秒前
嘻嘻哈哈发布了新的文献求助10
3秒前
5秒前
myheng完成签到 ,获得积分10
5秒前
BFQQQQ发布了新的文献求助10
7秒前
9秒前
10秒前
大米哈哈完成签到,获得积分10
12秒前
一起来读paper啊完成签到,获得积分10
14秒前
无奈尔珍完成签到,获得积分10
14秒前
ruann完成签到,获得积分10
17秒前
qx1866583196完成签到,获得积分10
18秒前
惘然完成签到 ,获得积分10
18秒前
19秒前
陈敏关注了科研通微信公众号
20秒前
沉静的冰香应助人人人采纳,获得10
21秒前
天天快乐应助张靖松采纳,获得10
21秒前
21秒前
xiuxiu_27完成签到 ,获得积分10
22秒前
典雅的夜梦完成签到,获得积分10
23秒前
英英女士完成签到,获得积分10
24秒前
26秒前
NexusExplorer应助典雅的夜梦采纳,获得10
27秒前
27秒前
权志龙完成签到,获得积分10
28秒前
29秒前
30秒前
30秒前
30秒前
搞怪网络发布了新的文献求助10
31秒前
彭于晏应助cm采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870508
求助须知:如何正确求助?哪些是违规求助? 3412737
关于积分的说明 10680838
捐赠科研通 3137151
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073