Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy

计算机科学 临床决策支持系统 图形 数据挖掘 知识抽取 机器学习 人工智能 决策支持系统 情报检索 自然语言处理 理论计算机科学
作者
Kewei Lyu,Yu Tian,Yong Shang,Tianshu Zhou,Ziyue Yang,Qianghua Liu,Xi Yao,Ping Zhang,Jianghua Chen,Jingsong Li
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:139: 104298-104298 被引量:24
标识
DOI:10.1016/j.jbi.2023.104298
摘要

Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小二郎应助79采纳,获得10
1秒前
暴富发布了新的文献求助10
2秒前
认真的AG发布了新的文献求助10
3秒前
3秒前
mc完成签到,获得积分10
3秒前
乐天应助QW采纳,获得10
4秒前
科目三应助FengMeichang采纳,获得10
4秒前
刘聪聪发布了新的文献求助10
4秒前
Bio应助KL1N采纳,获得50
4秒前
博修发布了新的文献求助30
5秒前
5秒前
坚定的凝云完成签到 ,获得积分10
6秒前
7秒前
porcelain发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
小铁铁发布了新的文献求助10
10秒前
maxiangyu完成签到 ,获得积分10
10秒前
科研通AI5应助一一采纳,获得10
11秒前
复杂汉堡发布了新的文献求助30
12秒前
12秒前
12秒前
美满白昼发布了新的文献求助10
13秒前
13秒前
栀盎发布了新的文献求助30
13秒前
14秒前
王肄博发布了新的文献求助10
14秒前
辣鸡小王发布了新的文献求助10
14秒前
ding应助南挽采纳,获得10
15秒前
领导范儿应助刘聪聪采纳,获得10
15秒前
15秒前
16秒前
星辰大海应助易槐采纳,获得10
18秒前
krajicek发布了新的文献求助10
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4152544
求助须知:如何正确求助?哪些是违规求助? 3688415
关于积分的说明 11652299
捐赠科研通 3381095
什么是DOI,文献DOI怎么找? 1855491
邀请新用户注册赠送积分活动 917354
科研通“疑难数据库(出版商)”最低求助积分说明 830922