已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma

医学 磁共振成像 接收机工作特性 曲线下面积 肝细胞癌 放射科 人工智能 核医学 内科学 计算机科学
作者
Fang Wang,Qingqing Chen,Yinan Chen,Yajing Zhu,Yuanyuan Zhang,Dan Cao,Wei Zhou,Xiao Liang,Yunjun Yang,Lanfen Lin,Hongjie Hu
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (1): 156-164 被引量:13
标识
DOI:10.1016/j.ejso.2022.08.036
摘要

Background Accurate preoperative identification of the microvascular invasion (MVI) can relieve the pressure from personalized treatment adaptation and improve the poor prognosis for hepatocellular carcinoma (HCC). This study aimed to develop and validate a novel multimodal deep learning (DL) model for predicting MVI based on multi-parameter magnetic resonance imaging (MRI) and contrast-enhanced computed tomography (CT). Methods A total of 397 HCC patients underwent both CT and MRI examinations before surgery. We established the radiological models (RCT, RMRI) by support vector machine (SVM), DL models (DLCT_ALL, DLMRI_ALL, DLCT + MRI) by ResNet18. The comprehensive model (CALL) involving multi-modality DL features and clinical and radiological features was constructed using SVM. Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared by net reclassification index (NRI) and integrated discrimination improvement (IDI). Results The DLCT + MRI model exhibited superior predicted efficiency over single-modality models, especially over the DLCT_ALL model (AUC: 0.819 vs. 0.742, NRI > 0, IDI > 0). The DLMRI_ALL model improved the performance over the RMRI model (AUC: 0.794 vs. 0.766, NRI > 0, IDI < 0), but no such difference was found between the DLCT_ALL model and RCT model (AUC: 0.742 vs. 0.710, NRI < 0, IDI < 0). Furthermore, both the DLCT + MRI and CALL models revealed the prognostic power in recurrence-free survival stratification (P < 0.001). Conclusion The proposed DLCT + MRI model showed robust capability in predicting MVI and outcomes for HCC. Besides, the identification ability of the multi-modality DL model was better than any single modality, especially for CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的灵完成签到 ,获得积分10
1秒前
梵高完成签到,获得积分10
2秒前
非我完成签到 ,获得积分10
2秒前
4秒前
思辰。完成签到,获得积分10
5秒前
所所应助落后猕猴桃采纳,获得10
7秒前
雪满头发布了新的文献求助10
9秒前
君知完成签到,获得积分10
9秒前
zzzllove完成签到 ,获得积分10
10秒前
aldd关注了科研通微信公众号
13秒前
英勇星月完成签到 ,获得积分10
13秒前
15秒前
懵懂的子骞完成签到 ,获得积分10
16秒前
雪满头完成签到,获得积分0
18秒前
科研通AI2S应助Hhh采纳,获得10
18秒前
科研通AI5应助傲娇泥猴桃采纳,获得10
25秒前
firesquall完成签到,获得积分10
29秒前
一丢丢完成签到 ,获得积分10
30秒前
31秒前
上官若男应助盈月采纳,获得10
33秒前
35秒前
Coffee完成签到 ,获得积分10
35秒前
35秒前
绝尘发布了新的文献求助10
39秒前
大模型应助一一采纳,获得10
41秒前
xiaokang123完成签到,获得积分10
42秒前
44秒前
所所应助wzh采纳,获得10
44秒前
单纯麦片完成签到,获得积分10
45秒前
落后猕猴桃完成签到,获得积分10
45秒前
司徒寒烟发布了新的文献求助10
48秒前
共享精神应助阿瓜采纳,获得10
48秒前
飞快的孱完成签到,获得积分10
48秒前
LIUFEIYE8887完成签到 ,获得积分10
49秒前
传奇3应助绝尘采纳,获得10
51秒前
eureka发布了新的文献求助10
51秒前
52秒前
52秒前
53秒前
冷酷愚志完成签到,获得积分10
54秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702