Data-driven methodology to predict the ICU length of stay: A multicentre study of 99,492 admissions in 109 Brazilian units

医学 布里氏评分 急诊医学 重症监护室 逻辑回归 重症监护 队列 回顾性队列研究 重症监护医学 内科学 统计 数学
作者
Igor Tona Peres,Sílvio Hamacher,Fernando Luiz Cyrino Oliveira,Fernando A. Bozza,Jorge I. Salluh
出处
期刊:Anaesthesia, critical care & pain medicine [Elsevier BV]
卷期号:41 (6): 101142-101142 被引量:12
标识
DOI:10.1016/j.accpm.2022.101142
摘要

The length of stay (LoS) is one of the most used metrics for resource use in Intensive Care Units (ICU). We propose a structured data-driven methodology to predict the ICU length of stay and the risk of prolonged stay, and its application in a large multicentre Brazilian ICU database. Demographic data, comorbidities, complications, laboratory data, and primary and secondary diagnosis were prospectively collected and retrospectively analysed by a data-driven methodology, which includes eight different machine learning models and a stacking model. The study setting included 109 mixed-type ICUs from 38 Brazilian hospitals and the external validation was performed by 93 medical-surgical ICUs of 55 hospitals in Brazil. A cohort of 99,492 adult ICU admissions were included from the 1st of January to the 31st of December 2019. The stacking model combining Random Forests and Linear Regression presented the best results to predict ICU length of stay (RMSE = 3.82; MAE = 2.52; R² = 0.36). The prediction model for the risk of long stay were accurate to early identify prolonged stay patients (Brier Score = 0.04, AUC = 0.87, PPV = 0.83, NPV = 0.95). The data-driven methodology to predict ICU length of stay and the risk of long-stay proved accurate in a large multicentre cohort of general ICU patients. The proposed models are helpful to predict the individual length of stay and to early identify patients with high risk of prolonged stay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123321关注了科研通微信公众号
刚刚
1秒前
1秒前
情怀应助水博士采纳,获得10
2秒前
所所应助鲁滨逊采纳,获得10
2秒前
3秒前
3秒前
Jane发布了新的文献求助10
3秒前
田様应助zql采纳,获得10
4秒前
5秒前
5秒前
5秒前
孟伟完成签到,获得积分10
5秒前
Alvienan完成签到,获得积分10
5秒前
董大米发布了新的文献求助10
6秒前
哦豁发布了新的文献求助20
6秒前
可爱又夏完成签到,获得积分10
6秒前
huche应助草木采纳,获得10
6秒前
LULU发布了新的文献求助10
6秒前
8秒前
Sprite666发布了新的文献求助10
8秒前
挖掘机给ED的求助进行了留言
8秒前
9秒前
KK完成签到,获得积分10
9秒前
9秒前
LIU发布了新的文献求助10
10秒前
10秒前
feng完成签到,获得积分10
10秒前
学大西完成签到,获得积分10
11秒前
VV2001完成签到,获得积分10
11秒前
CipherSage应助魔幻的迎松采纳,获得10
11秒前
lin完成签到,获得积分10
11秒前
12秒前
戳yaya完成签到,获得积分20
12秒前
董大米完成签到,获得积分10
12秒前
凤凰山发布了新的文献求助10
12秒前
12秒前
折光发布了新的文献求助10
13秒前
祁行云完成签到,获得积分10
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181283
求助须知:如何正确求助?哪些是违规求助? 3717037
关于积分的说明 11717852
捐赠科研通 3397293
什么是DOI,文献DOI怎么找? 1863997
邀请新用户注册赠送积分活动 922092
科研通“疑难数据库(出版商)”最低求助积分说明 833788