Development of autogenous shrinkage prediction model of alkali-activated slag-fly ash geopolymer based on machine learning

收缩率 粉煤灰 聚合物 熔渣(焊接) 灰浆 材料科学 复合材料
作者
Jiale Shen,Yue Li,Hui Lin,Yaqiang Li
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:71: 106538-106538 被引量:22
标识
DOI:10.1016/j.jobe.2023.106538
摘要

This paper developed an autogenous shrinkage prediction tool with high accuracy through machine learning for alkali-activated slag-fly ash geopolymer. The influencing factors of autogenous shrinkage of activated slag-fly ash geopolymer paste and mortar were analyzed. The results show that Extreme Gradient Boosting (XGB) algorithm achieves the best prediction performance with R2 of over 0.90 and strong generalization ability for predicting the autogenous shrinkage of alkali-activated slag-fly ash geopolymer paste and mortar. The decrease in W/B, alkali dosage and slag content can reduce the autogenous shrinkage of alkali-activated slag-fly ash geopolymer paste, while increasing W/B and decreasing alkali dosage are beneficial to mitigate the autogenous shrinkage of alkali-activated slag-fly ash geopolymer mortar. The Graphical User Interface (GUI) used for autogenous shrinkage prediction of alkali-activated slag-fly ash geopolymer paste or mortar was designed, which can directly be used for predicting autogenous shrinkage on the premise of knowing the synthesis parameters of geopolymer. This prediction tool can prejudge the autogenous shrinkage of alkali-activated slag-fly ash geopolymer materials instead of preforming cumbersome autogenous shrinkage test, which will significantly reduce the workload if we only need to know the autogenous shrinkage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡如江南水墨完成签到,获得积分10
1秒前
1秒前
科研通AI5应助木南采纳,获得30
2秒前
星辰大海应助健壮的翠安采纳,获得10
2秒前
科研通AI5应助瓜瓜程采纳,获得10
2秒前
杨阳洋完成签到,获得积分10
3秒前
3秒前
格格发布了新的文献求助20
4秒前
顾海东发布了新的文献求助10
4秒前
4秒前
上官若男应助1111111采纳,获得10
5秒前
Owen应助cheetollly采纳,获得10
5秒前
NCU-Xzzzz完成签到,获得积分10
6秒前
7秒前
善学以致用应助dyfsj采纳,获得10
8秒前
8秒前
NCU-Xzzzz发布了新的文献求助10
8秒前
9秒前
染墨完成签到,获得积分10
9秒前
脑洞疼应助趣乐多采纳,获得30
9秒前
潘qb发布了新的文献求助10
9秒前
10秒前
小蘑菇应助大辉采纳,获得10
10秒前
科研通AI5应助AoAoo采纳,获得10
11秒前
12秒前
可乐冰完成签到,获得积分10
12秒前
D_Daying完成签到 ,获得积分10
13秒前
善良的咖啡完成签到,获得积分10
13秒前
思南欧发布了新的文献求助10
13秒前
科研通AI5应助夏天采纳,获得10
14秒前
舒心莫言完成签到,获得积分10
14秒前
dll发布了新的文献求助10
15秒前
晨天完成签到,获得积分10
15秒前
bkagyin应助俏皮的聪展采纳,获得10
16秒前
16秒前
Ava应助LuoYixiang采纳,获得10
16秒前
科研通AI5应助deng66657采纳,获得10
16秒前
17秒前
毅然决然必然应助柯同采纳,获得10
17秒前
cdercder应助洋洋采纳,获得10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221