控制理论(社会学)
计算机科学
偏移量(计算机科学)
观察员(物理)
转子(电动)
扭矩
职位(财务)
锁相环
病媒控制
感应电动机
物理
人工智能
相(物质)
控制(管理)
电压
量子力学
热力学
财务
经济
程序设计语言
作者
Marius Fatu,Remus Teodorescu,Ion Boldea,Gheorghe‐Daniel Andreescu,Frede Blaabjerg
出处
期刊:PESC record
日期:2008-06-01
卷期号:: 1481-1487
被引量:92
标识
DOI:10.1109/pesc.2008.4592146
摘要
This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of i d , i q currents with the reference currents i d * = 0 and i q * constant, and the reference frequency having ramp variation. This solution allows ultra low- speed sensorless control without initial rotor-position estimation, and without machine parameters identification. A first-order lag compensator is employed to ensure a smooth transition from I-f to emf sensorless vector control when the frequency reaches a certain level, and back. The PMSM rotor position and speed are extracted by using a PLL state-observer from the estimated rotor-flux, which is based on an equivalent integrator in close- loop with a PI speed-adaptive compensator to eliminate dc-offset and phase-delay. Digital simulations for PMSM start-up with full load torque are presented for different initial rotor-positions. The transitions from I-f to emf motion-sensorless vector control and back as well, at very low-speeds, are fully validated by experimental results. This method is suitable for both surface and interior PMSMs, but the paper refers directly only to surface PMSM. Other field of application might be in wind generators safe (faster) self-starting when they are connected to the grid, or moving the rotor a little for inspections/repairs, and for general industrial variable speed drives where slightly hesitant but full- load self-starting is allowable.
科研通智能强力驱动
Strongly Powered by AbleSci AI