模式识别(心理学)
不变(物理)
稳健性(进化)
人工智能
小波
Gabor滤波器
小波
特征提取
数学
小波变换
高斯噪声
高斯分布
计算机科学
滤波器(信号处理)
旋转(数学)
计算机视觉
算法
离散小波变换
物理
量子力学
数学物理
基因
生物化学
化学
作者
Robert P. Porter,Nishan Canagarajah
出处
期刊:IEE proceedings
[Institution of Electrical Engineers]
日期:1997-01-01
卷期号:144 (3): 180-180
被引量:192
标识
DOI:10.1049/ip-vis:19971182
摘要
Three novel feature extraction schemes for texture classification are proposed. The schemes employ the wavelet transform, a circularly symmetric Gabor filter or a Gaussian Markov random field with a circular neighbour set to achieve rotation-invariant texture classification. The schemes are shown to give a high level of classification accuracy compared to most existing schemes, using both fewer features (four) and a smaller area of analysis (16 × 16). Furthermore, unlike most existing schemes, the proposed schemes are shown to be rotation invariant and demonstrate a high level of robustness to noise. The performances of the three schemes are compared, indicating that the wavelet-based approach is the most accurate, exhibits the best noise performance and has the lowest computational complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI