亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier BV]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
里工完成签到 ,获得积分10
2秒前
陈诚1111发布了新的文献求助10
3秒前
10秒前
研友_892kOL完成签到 ,获得积分10
12秒前
yuhang发布了新的文献求助10
16秒前
上官若男应助陈诚1111采纳,获得10
24秒前
yuhang完成签到,获得积分10
25秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
53秒前
yimoyafan发布了新的文献求助30
57秒前
斯文败类应助土豪的摩托采纳,获得10
1分钟前
雨渺清空完成签到 ,获得积分10
1分钟前
1分钟前
高高店员完成签到 ,获得积分10
1分钟前
1分钟前
无与伦比完成签到 ,获得积分10
1分钟前
1分钟前
乐乐发布了新的文献求助10
1分钟前
研友_VZG7GZ应助乐乐采纳,获得10
1分钟前
就知道发布了新的文献求助10
1分钟前
2分钟前
2分钟前
风笛完成签到 ,获得积分10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
meng给雪中的求助进行了留言
2分钟前
搜集达人应助鸢翔flybird采纳,获得10
3分钟前
不瞌睡应助www采纳,获得50
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
meng完成签到,获得积分10
3分钟前
fishss完成签到 ,获得积分10
4分钟前
dax大雄完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ymr完成签到 ,获得积分10
5分钟前
5分钟前
草上飞完成签到 ,获得积分10
5分钟前
雪中发布了新的文献求助10
5分钟前
5分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903918
求助须知:如何正确求助?哪些是违规求助? 3448736
关于积分的说明 10854320
捐赠科研通 3174130
什么是DOI,文献DOI怎么找? 1753725
邀请新用户注册赠送积分活动 847948
科研通“疑难数据库(出版商)”最低求助积分说明 790562