Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习完成签到 ,获得积分10
刚刚
1秒前
浪子应助开心的茗茗采纳,获得10
2秒前
Hello应助开心的茗茗采纳,获得10
2秒前
Elijah发布了新的文献求助10
2秒前
大花花完成签到,获得积分10
3秒前
5秒前
wnan_07完成签到,获得积分10
8秒前
blenx完成签到,获得积分10
8秒前
zhangmeimei发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
上善若水完成签到,获得积分10
13秒前
隐形曼青应助3719left采纳,获得10
13秒前
16秒前
17秒前
冉纯菲发布了新的文献求助10
17秒前
17秒前
ming发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
章鱼烧完成签到 ,获得积分10
20秒前
20秒前
惜海发布了新的文献求助10
21秒前
mumu发布了新的文献求助10
22秒前
22秒前
FCC发布了新的文献求助10
23秒前
wmq发布了新的文献求助10
23秒前
23秒前
独特海白完成签到,获得积分10
24秒前
25秒前
宇里游人完成签到,获得积分10
25秒前
Yangon发布了新的文献求助10
26秒前
3719left发布了新的文献求助10
27秒前
共享精神应助11223344采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
wmq完成签到,获得积分10
30秒前
陈粒完成签到 ,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978