清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bayesian model selection for group studies

贝叶斯因子 频数推理 贝叶斯分层建模 Dirichlet分布 选型 贝叶斯概率 先验概率 贝叶斯推理 数学 计算机科学 贝叶斯定理 人工智能 机器学习 统计 数学分析 边值问题
作者
Klaas Ε. Stephan,W.D. Penny,Jean Daunizeau,Rosalyn Moran,Karl Friston
出处
期刊:NeuroImage [Elsevier BV]
卷期号:46 (4): 1004-1017 被引量:1359
标识
DOI:10.1016/j.neuroimage.2009.03.025
摘要

Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of competing hypotheses about the mechanisms that generated observed data. BMS has recently found widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM). However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we compare the GBF with two random effects methods for BMS at the between-subject or group level. These methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical model, which is optimised to furnish a probability density on the models themselves. This new variational Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet distribution which describes the probabilities for all models considered. These probabilities then define a multinomial distribution over model space, allowing one to compute how likely it is that a specific model generated the data of a randomly chosen subject as well as the exceedance probability of one model being more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional density of the model probabilities, given the log-evidences for each model over subjects, is more informative and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the hierarchical Bayesian approach is considerably more robust than either of the other approaches in the presence of outliers. We expect that this new random effects method will prove useful for a wide range of group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or selecting among competing computational models of learning and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nav完成签到 ,获得积分10
5秒前
田様应助xiaoyi采纳,获得10
17秒前
柯伊达完成签到 ,获得积分10
18秒前
害羞的裘完成签到 ,获得积分10
26秒前
cdercder应助科研通管家采纳,获得20
27秒前
DJ_Tokyo完成签到,获得积分10
39秒前
ii完成签到 ,获得积分10
42秒前
禾禾完成签到 ,获得积分10
50秒前
1分钟前
西山菩提完成签到,获得积分10
1分钟前
不胜玖完成签到 ,获得积分10
1分钟前
wishes完成签到 ,获得积分10
1分钟前
2分钟前
开心夏旋完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
Iso完成签到,获得积分10
2分钟前
wwe完成签到,获得积分10
2分钟前
hi_traffic发布了新的文献求助10
2分钟前
2分钟前
xiaoyi发布了新的文献求助10
2分钟前
小蘑菇应助xiaoyi采纳,获得10
3分钟前
唠叨的天亦完成签到 ,获得积分10
3分钟前
小柯基学从零学起完成签到 ,获得积分10
3分钟前
3分钟前
1437594843完成签到 ,获得积分10
3分钟前
发嗲的慕蕊完成签到 ,获得积分10
3分钟前
Jasmineyfz完成签到 ,获得积分10
3分钟前
陶醉的烤鸡完成签到 ,获得积分10
3分钟前
大椒完成签到 ,获得积分10
3分钟前
QiaoHL完成签到 ,获得积分10
4分钟前
科研小螃蟹完成签到,获得积分10
4分钟前
4分钟前
asdwind完成签到,获得积分10
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
Tina酱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
xiaoyi发布了新的文献求助10
4分钟前
廖天佑完成签到,获得积分0
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666392
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805