有机太阳能电池
材料科学
激子
扩散
能量转换效率
接受者
吸收(声学)
化学物理
马库斯理论
电介质
混合太阳能电池
电子
有机半导体
电子转移
光伏系统
极限(数学)
光电子学
聚合物太阳能电池
光化学
反应速率常数
物理
凝聚态物理
化学
聚合物
热力学
量子力学
动力学
复合材料
生态学
数学分析
数学
生物
作者
L. Jan Anton Koster,Sean E. Shaheen,Jan C. Hummelen
标识
DOI:10.1002/aenm.201200103
摘要
Abstract Three different theoretical approaches are presented to identify pathways to organic solar cells with power conversion efficiencies in excess of 20%. A radiation limit for organic solar cells is introduced that elucidates the role of charge‐transfer (CT) state absorption. Provided this CT action is sufficiently weak, organic solar cells can be as efficient as their inorganic counterparts. Next, a model based on Marcus theory of electronic transfer that also considers exciton generation in both the electron donor and electron acceptor is used to show how reduction of the reorganization energies can lead to substantial efficiency gains. Finally, the dielectric constant is introduced as a central parameter for efficient solar cells. By using a drift–diffusion model, it is found that efficiencies of more than 20% are within reach.
科研通智能强力驱动
Strongly Powered by AbleSci AI