化学
寡核苷酸
底漆延伸
底漆(化妆品)
连接器
限制性酶
核酸热力学
DNA
生物化学
有机化学
计算机科学
操作系统
基序列
作者
Sheila R. Nicewarner Peña,Surabhi Raina,Glenn P. Goodrich,Nina V. Fedoroff,Christine D. Keating
摘要
We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions, in which covalent incorporation of nucleotides to form the complement of the template is achieved by the action of DNA polymerase. Primers were attached via-C(6)H(12)SH, -C(12)H(24)SH, and -TTACAATC(6)H(12)SH linkers attached at the 5' end. Primer coverage on the nanoparticles was varied by dilution with (5')HSC(6)H(12)AAA AAA(3'). Hybridization efficiencies were determined as a function of linker length, primer coverage, complement length (12-mer vs 88-mer), and primer:complement concentration ratio. In all cases, hybridization for the 88-mer was less efficient than for the 12-mer. Low primer surface coverage, greater particle-primer separation, and higher primer:complement ratios led to optimal hybridization. Hybridization efficiencies as high as 98% and 75% were observed for the 12-mer and 88-mer, respectively. Enzymatic extension of particle-bound primers was observed under all conditions tested; however, the efficiency of the reaction was strongly affected by linker length and primer coverage. Extension of primers attached by the longest linker was as efficient as the solution-phase reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI