Hybrid prediction model with missing value imputation for medical data

插补(统计学) 缺少数据 聚类分析 计算机科学 数据挖掘 数据集 人工智能 多层感知器 模式识别(心理学) 人工神经网络 机器学习
作者
Archana Purwar,Sandeep Kumar Singh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:42 (13): 5621-5631 被引量:128
标识
DOI:10.1016/j.eswa.2015.02.050
摘要

Accurate prediction in the presence of large number of missing values in the data set has always been a challenging problem. Most of hybrid models to address this challenge have either deleted the missing instances from the data set (popularly known as case deletion) or have used some default way to fill the missing values. This paper, presents a novel hybrid prediction model with missing value imputation (HPM-MI) that analyze various imputation techniques using simple K-means clustering and apply the best one to a data set. The proposed hybrid model is the first one to use combination of K-means clustering with Multilayer Perceptron. K-means clustering is also used to validate class labels of given data (incorrectly classified instances are deleted i.e. pattern extracted from original data) before applying classifier. The proposed system has significantly improved data quality by use of best imputation technique after quantitative analysis of eleven imputation approaches. The efficiency of proposed model as predictive classification system is investigated on three benchmark medical data sets namely Pima Indians Diabetes, Wisconsin Breast Cancer, and Hepatitis from the UCI Repository of Machine Learning. In addition to accuracy, sensitivity, specificity; kappa statistics and the area under ROC are also computed. The experimental results show HPM-MI has produced accuracy, sensitivity, specificity, kappa and ROC as 99.82%, 100%, 99.74%, 0.996 and 1.0 respectively for Pima Indian Diabetes data set, 99.39%, 99.31%, 99.54%, 0.986, and 1.0 respectively for breast cancer data set and 99.08%, 100%, 96.55%, 0.978 and 0.99 respectively for Hepatitis data set. Results are best in comparison with existing methods. Further, the performance of our model is measured and analyzed as function of missing rate and train-test ratio using 2D synthetic data set and Wisconsin Diagnostics Breast Cancer Data Sets. Results are promising and therefore the proposed model will be very useful in prediction for medical domain especially when numbers of missing value are large in the data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cpp完成签到,获得积分10
3秒前
5秒前
yah发布了新的文献求助30
6秒前
6秒前
雾见春完成签到 ,获得积分10
6秒前
苏苏苏完成签到,获得积分10
6秒前
6秒前
11秒前
淡淡夕阳发布了新的文献求助10
12秒前
12秒前
没头脑完成签到,获得积分10
13秒前
14秒前
打打应助yah采纳,获得10
16秒前
17秒前
绿色心情发布了新的文献求助10
18秒前
20秒前
秋天不回来完成签到,获得积分10
25秒前
AXQ完成签到,获得积分10
25秒前
26秒前
28秒前
31秒前
cf2v完成签到,获得积分0
31秒前
赘婿应助落后醉易采纳,获得10
32秒前
小康找文献完成签到 ,获得积分10
33秒前
Owen应助认真的忆文采纳,获得10
34秒前
害羞便当发布了新的文献求助10
34秒前
35秒前
科研通AI5应助幸福采纳,获得10
36秒前
无奈的萍发布了新的文献求助30
36秒前
yibo完成签到,获得积分10
36秒前
勤奋雨完成签到,获得积分10
39秒前
39秒前
海豚有海完成签到,获得积分10
39秒前
41秒前
42秒前
44秒前
Alan完成签到 ,获得积分10
44秒前
48秒前
幸福完成签到,获得积分20
48秒前
youngyang完成签到 ,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563