Hybrid prediction model with missing value imputation for medical data

插补(统计学) 缺少数据 聚类分析 计算机科学 数据挖掘 数据集 人工智能 多层感知器 模式识别(心理学) 人工神经网络 机器学习
作者
Archana Purwar,Sandeep Kumar Singh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:42 (13): 5621-5631 被引量:128
标识
DOI:10.1016/j.eswa.2015.02.050
摘要

Accurate prediction in the presence of large number of missing values in the data set has always been a challenging problem. Most of hybrid models to address this challenge have either deleted the missing instances from the data set (popularly known as case deletion) or have used some default way to fill the missing values. This paper, presents a novel hybrid prediction model with missing value imputation (HPM-MI) that analyze various imputation techniques using simple K-means clustering and apply the best one to a data set. The proposed hybrid model is the first one to use combination of K-means clustering with Multilayer Perceptron. K-means clustering is also used to validate class labels of given data (incorrectly classified instances are deleted i.e. pattern extracted from original data) before applying classifier. The proposed system has significantly improved data quality by use of best imputation technique after quantitative analysis of eleven imputation approaches. The efficiency of proposed model as predictive classification system is investigated on three benchmark medical data sets namely Pima Indians Diabetes, Wisconsin Breast Cancer, and Hepatitis from the UCI Repository of Machine Learning. In addition to accuracy, sensitivity, specificity; kappa statistics and the area under ROC are also computed. The experimental results show HPM-MI has produced accuracy, sensitivity, specificity, kappa and ROC as 99.82%, 100%, 99.74%, 0.996 and 1.0 respectively for Pima Indian Diabetes data set, 99.39%, 99.31%, 99.54%, 0.986, and 1.0 respectively for breast cancer data set and 99.08%, 100%, 96.55%, 0.978 and 0.99 respectively for Hepatitis data set. Results are best in comparison with existing methods. Further, the performance of our model is measured and analyzed as function of missing rate and train-test ratio using 2D synthetic data set and Wisconsin Diagnostics Breast Cancer Data Sets. Results are promising and therefore the proposed model will be very useful in prediction for medical domain especially when numbers of missing value are large in the data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江漓完成签到 ,获得积分10
2秒前
YifanWang应助研友_ngXbVZ采纳,获得10
2秒前
光亮千易完成签到,获得积分10
2秒前
震动的修洁完成签到 ,获得积分10
4秒前
5秒前
manman完成签到 ,获得积分10
5秒前
WSY完成签到 ,获得积分10
8秒前
李天浩完成签到 ,获得积分10
13秒前
CUN完成签到,获得积分10
14秒前
zhangxinan完成签到,获得积分10
26秒前
给我一篇文献吧完成签到 ,获得积分10
27秒前
31秒前
Orange应助LYZSh采纳,获得10
39秒前
真水无香应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
淡淡醉波wuliao完成签到 ,获得积分0
53秒前
sdzl完成签到,获得积分10
53秒前
可怜的游戏完成签到,获得积分10
55秒前
黑粉头头完成签到,获得积分10
56秒前
qianci2009完成签到,获得积分10
58秒前
imomoe完成签到,获得积分0
59秒前
LYZSh完成签到,获得积分10
1分钟前
happy完成签到 ,获得积分10
1分钟前
小杨完成签到,获得积分20
1分钟前
博修发布了新的文献求助20
1分钟前
xiaoxiao完成签到 ,获得积分10
1分钟前
焱焱不忘完成签到 ,获得积分0
1分钟前
犹豫代曼完成签到,获得积分10
1分钟前
Hindiii完成签到,获得积分10
1分钟前
huangqian完成签到,获得积分10
1分钟前
eth完成签到 ,获得积分10
1分钟前
George完成签到 ,获得积分10
1分钟前
Dawnnn完成签到 ,获得积分10
1分钟前
117发布了新的文献求助10
1分钟前
song完成签到 ,获得积分10
1分钟前
Goblin完成签到 ,获得积分10
1分钟前
顺利的乐枫完成签到 ,获得积分10
1分钟前
科研通AI2S应助萨尔莫斯采纳,获得10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
Rita完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131226
求助须知:如何正确求助?哪些是违规求助? 3667963
关于积分的说明 11600985
捐赠科研通 3365646
什么是DOI,文献DOI怎么找? 1849139
邀请新用户注册赠送积分活动 912898
科研通“疑难数据库(出版商)”最低求助积分说明 828355