亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EFNet: evidence fusion network for tumor segmentation from PET-CT volumes

分割 特征(语言学) 计算机科学 人工智能 卷积神经网络 融合 正电子发射断层摄影术 PET-CT 模式识别(心理学) 图像融合 核医学 医学 图像(数学) 语言学 哲学
作者
Zhaoshuo Diao,Huiyan Jiang,Xian‐Hua Han,Yudong Yao,Tianyu Shi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205005-205005 被引量:21
标识
DOI:10.1088/1361-6560/ac299a
摘要

Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
白华苍松发布了新的文献求助20
30秒前
39秒前
华仔应助白华苍松采纳,获得10
41秒前
Yolanda_Xu完成签到 ,获得积分10
52秒前
54秒前
波里舞完成签到 ,获得积分10
1分钟前
renren完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
lisaltp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
田様应助科研进化中采纳,获得10
1分钟前
2分钟前
完美世界应助Maomaojiangjiang采纳,获得10
2分钟前
CodeCraft应助持卿采纳,获得10
2分钟前
JamesPei应助香菜张采纳,获得10
2分钟前
无极微光应助白华苍松采纳,获得20
3分钟前
3分钟前
3分钟前
香菜张发布了新的文献求助10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
优秀棒棒糖完成签到 ,获得积分10
3分钟前
Jonathan发布了新的文献求助10
4分钟前
4分钟前
Maomaojiangjiang完成签到,获得积分10
4分钟前
不会学习的小郭完成签到 ,获得积分10
4分钟前
4分钟前
Jonathan完成签到,获得积分10
4分钟前
蔡秋景完成签到,获得积分10
4分钟前
蔡秋景发布了新的文献求助10
4分钟前
苹果完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
完美世界应助科研进化中采纳,获得10
5分钟前
深情安青应助贝利亚采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529234
求助须知:如何正确求助?哪些是违规求助? 4618411
关于积分的说明 14562581
捐赠科研通 4557420
什么是DOI,文献DOI怎么找? 2497506
邀请新用户注册赠送积分活动 1477735
关于科研通互助平台的介绍 1449171