间充质干细胞
再生(生物学)
壳聚糖
脚手架
软骨
己内酯
细胞生物学
材料科学
核酸
生物医学工程
复合材料
化学工程
解剖
聚合物
医学
生物
化学
生物化学
聚合
工程类
作者
Pinxue Li,Liwei Fu,Zhiyao Liao,Peng Yu,Chao Ning,Cangjian Gao,Daxu Zhang,Xiang Sui,Yunfeng Lin,Shuyun Liu,Chunxiang Hao,Quanyi Guo
出处
期刊:Biomaterials
[Elsevier BV]
日期:2021-09-15
卷期号:278: 121131-121131
被引量:132
标识
DOI:10.1016/j.biomaterials.2021.121131
摘要
Articular cartilage (AC) injury repair has always been a difficult problem for clinicians and researchers. Recently, a promising therapy based on mesenchymal stem cells (MSCs) has been developed for the regeneration of cartilage defects. As endogenous articular stem cells, synovial MSCs (SMSCs) possess strong chondrogenic differentiation ability and articular specificity. In this study, a cartilage regenerative system was developed based on a chitosan (CS) hydrogel/3D-printed poly(ε‐caprolactone) (PCL) hybrid containing SMSCs and recruiting tetrahedral framework nucleic acid (TFNA) injected into the articular cavity. TFNA, which is a promising DNA nanomaterial for improving the regenerative microenvironment, could be taken up into SMSCs and promoted the proliferation and chondrogenic differentiation of SMSCs. CS, as a cationic polysaccharide, can bind to DNA through electrostatic action and recruit free TFNA after articular cavity injection in vivo. The 3D-printed PCL scaffold provided basic mechanical support, and TFNA provided a good microenvironment for the proliferation and chondrogenic differentiation of the delivered SMSCs and promoted cartilage regeneration, thus greatly improving the repair of cartilage defects. In conclusion, this study confirmed that a CS hydrogel/3D-printed PCL hybrid scaffold containing SMSCs could be a promising strategy for cartilage regeneration based on chitosan-directed TFNA recruitment and TFNA-enhanced cell proliferation and chondrogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI