A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning

计算机辅助设计 肺癌筛查 可解释性 医学 肺癌 人工智能 深度学习 结核(地质) 全国肺筛查试验 分割 放射科 计算机科学 计算机断层摄影术 机器学习 医学物理学 病理 内科学 古生物学 工程制图 工程类 生物
作者
Yu Gu,Jingqian Chi,Jiaqi Liu,Lidong Yang,Baohua Zhang,Dahua Yu,Ying Zhao,Xiaoqi Lu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:137: 104806-104806 被引量:119
标识
DOI:10.1016/j.compbiomed.2021.104806
摘要

Lung cancer has one of the highest mortalities of all cancers. According to the National Lung Screening Trial, patients who underwent low-dose computed tomography (CT) scanning once a year for 3 years showed a 20% decline in lung cancer mortality. To further improve the survival rate of lung cancer patients, computer-aided diagnosis (CAD) technology shows great potential. In this paper, we summarize existing CAD approaches applying deep learning to CT scan data for pre-processing, lung segmentation, false positive reduction, lung nodule detection, segmentation, classification and retrieval. Selected papers are drawn from academic journals and conferences up to November 2020. We discuss the development of deep learning, describe several important aspects of lung nodule CAD systems and assess the performance of the selected studies on various datasets, which include LIDC-IDRI, LUNA16, LIDC, DSB2017, NLST, TianChi, and ELCAP. Overall, in the detection studies reviewed, the sensitivity of these techniques is found to range from 61.61% to 98.10%, and the value of the FPs per scan is between 0.125 and 32. In the selected classification studies, the accuracy ranges from 75.01% to 97.58%. The precision of the selected retrieval studies is between 71.43% and 87.29%. Based on performance, deep learning based CAD technologies for detection and classification of pulmonary nodules achieve satisfactory results. However, there are still many challenges and limitations remaining including over-fitting, lack of interpretability and insufficient annotated data. This review helps researchers and radiologists to better understand CAD technology for pulmonary nodule detection, segmentation, classification and retrieval. We summarize the performance of current techniques, consider the challenges, and propose directions for future high-impact research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
x银河里发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
3秒前
搜集达人应助谢嘉健采纳,获得30
4秒前
徐瑕客应助研究僧采纳,获得10
5秒前
moon发布了新的文献求助10
5秒前
刘明生发布了新的文献求助10
6秒前
木z发布了新的文献求助10
6秒前
Sicily发布了新的文献求助10
6秒前
清爽灵萱完成签到,获得积分10
7秒前
元始天尊发布了新的文献求助10
9秒前
桐桐应助干净冰露采纳,获得10
12秒前
13秒前
14秒前
15秒前
田様应助研究僧采纳,获得10
15秒前
善学以致用应助哈哈采纳,获得10
16秒前
Lucas应助moon采纳,获得10
16秒前
17秒前
阅遍SCI完成签到,获得积分10
20秒前
元始天尊完成签到,获得积分10
21秒前
logitech发布了新的文献求助10
22秒前
lxp完成签到,获得积分10
22秒前
wendy完成签到,获得积分10
23秒前
xiao双月完成签到,获得积分10
26秒前
顾矜应助A溶大美噶采纳,获得10
26秒前
耶啵完成签到,获得积分10
27秒前
孙燕应助李一李采纳,获得10
27秒前
28秒前
光亮的莺完成签到,获得积分10
28秒前
35秒前
深情安青应助亲爱的融采纳,获得30
36秒前
脑洞疼应助Richard采纳,获得10
36秒前
博弈春秋发布了新的文献求助10
36秒前
37秒前
38秒前
38秒前
38秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451681
关于积分的说明 10865958
捐赠科研通 3176999
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791207