A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning

计算机辅助设计 肺癌筛查 可解释性 医学 肺癌 人工智能 深度学习 结核(地质) 全国肺筛查试验 分割 放射科 计算机科学 计算机断层摄影术 机器学习 医学物理学 病理 内科学 古生物学 工程制图 工程类 生物
作者
Yu Gu,Jingqian Chi,Jiaqi Liu,Lidong Yang,Baohua Zhang,Dahua Yu,Ying Zhao,Xiaoqi Lu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:137: 104806-104806 被引量:168
标识
DOI:10.1016/j.compbiomed.2021.104806
摘要

Lung cancer has one of the highest mortalities of all cancers. According to the National Lung Screening Trial, patients who underwent low-dose computed tomography (CT) scanning once a year for 3 years showed a 20% decline in lung cancer mortality. To further improve the survival rate of lung cancer patients, computer-aided diagnosis (CAD) technology shows great potential. In this paper, we summarize existing CAD approaches applying deep learning to CT scan data for pre-processing, lung segmentation, false positive reduction, lung nodule detection, segmentation, classification and retrieval. Selected papers are drawn from academic journals and conferences up to November 2020. We discuss the development of deep learning, describe several important aspects of lung nodule CAD systems and assess the performance of the selected studies on various datasets, which include LIDC-IDRI, LUNA16, LIDC, DSB2017, NLST, TianChi, and ELCAP. Overall, in the detection studies reviewed, the sensitivity of these techniques is found to range from 61.61% to 98.10%, and the value of the FPs per scan is between 0.125 and 32. In the selected classification studies, the accuracy ranges from 75.01% to 97.58%. The precision of the selected retrieval studies is between 71.43% and 87.29%. Based on performance, deep learning based CAD technologies for detection and classification of pulmonary nodules achieve satisfactory results. However, there are still many challenges and limitations remaining including over-fitting, lack of interpretability and insufficient annotated data. This review helps researchers and radiologists to better understand CAD technology for pulmonary nodule detection, segmentation, classification and retrieval. We summarize the performance of current techniques, consider the challenges, and propose directions for future high-impact research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助bbbuuu采纳,获得10
2秒前
叮当发布了新的文献求助10
3秒前
qifunongsuo1213完成签到 ,获得积分10
3秒前
5秒前
Biophysics完成签到,获得积分20
5秒前
丰都麻辣鸡完成签到,获得积分10
5秒前
5秒前
7秒前
慕青应助外向宝川采纳,获得10
7秒前
可爱的函函应助精明怜南采纳,获得10
8秒前
Akim应助Chenkun采纳,获得10
9秒前
9秒前
10秒前
童话北极村完成签到,获得积分10
11秒前
akko发布了新的文献求助10
11秒前
小蘑菇应助酷酷的小钟采纳,获得10
13秒前
pluto应助xiyang采纳,获得10
13秒前
明明完成签到,获得积分10
14秒前
14秒前
xuchen发布了新的文献求助10
16秒前
何佳丽发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
19秒前
20秒前
舒心的冷安完成签到,获得积分10
20秒前
LL发布了新的文献求助10
21秒前
一一完成签到,获得积分10
22秒前
热心傲珊发布了新的文献求助10
24秒前
XinyiYang发布了新的文献求助10
24秒前
斯文败类应助一一采纳,获得80
25秒前
糟糕的翠发布了新的文献求助10
29秒前
29秒前
靳志强发布了新的文献求助10
29秒前
Mlwwq完成签到,获得积分20
30秒前
量子星尘发布了新的文献求助10
30秒前
32秒前
Orange应助Wy21采纳,获得10
32秒前
SciGPT应助着急的书本采纳,获得10
33秒前
MW完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533429
求助须知:如何正确求助?哪些是违规求助? 4621675
关于积分的说明 14579891
捐赠科研通 4561782
什么是DOI,文献DOI怎么找? 2499586
邀请新用户注册赠送积分活动 1479344
关于科研通互助平台的介绍 1450522