Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep neural network

声学 亥姆霍兹谐振器 宽带 谐振器 人工神经网络 吸收(声学) 反向 低频 亥姆霍兹自由能 计算机科学 材料科学 物理 电信 数学 光电子学 人工智能 几何学 量子力学
作者
K. Mahesh,S. Kumar Ranjith,R. S. Mini
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:129 (17) 被引量:36
标识
DOI:10.1063/5.0046582
摘要

The design of low-frequency sound absorbers with broadband absorption characteristics and optimized dimensions is a pressing research problem in engineering acoustics. In this work, a deep neural network based inverse prediction mechanism is proposed to geometrically design a Helmholtz resonator (HR) based acoustic absorber for low-frequency absorption. Analytically obtained frequency response from electro-acoustic theory is deployed to create the large dataset required for training and testing the deep neural network. The trained convolutional neural network inversely speculates optimum design parameters corresponding to the desired absorption characteristics with high fidelity. To validate, the inverse design procedure is initially implemented on a standard HR based sound absorber model with high accuracy. Thereafter, the inverse design strategy is extended to forecast the optimum geometric parameters of an absorber with complex features, which is realized using HRs and a micro-perforated panel. Subsequently, a quasi-perfect low-frequency acoustic absorber having minimum thickness and broadband characteristics is deduced. Importantly, it is demonstrated that the proposed absorber, comprising four parallel HRs and a microperforated panel, absorbed more than 90% sound in the frequency band of 347–630 Hz. The introduced design process reveals a wide variety of applications in engineering acoustics as it is suitable for tailoring any sound absorber model with desirable features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flower关注了科研通微信公众号
刚刚
1秒前
5秒前
6秒前
科研通AI5应助zfihead采纳,获得10
7秒前
lu发布了新的文献求助10
8秒前
LL发布了新的文献求助10
9秒前
Cindy165完成签到 ,获得积分10
9秒前
侠医2012完成签到,获得积分0
11秒前
令莞发布了新的文献求助10
12秒前
chiyudoubao完成签到 ,获得积分10
15秒前
flower发布了新的文献求助10
15秒前
18秒前
哈哈哈完成签到,获得积分20
20秒前
冷静无心发布了新的文献求助10
20秒前
21秒前
科研通AI2S应助腼腆的冷玉采纳,获得10
22秒前
23秒前
Sinner发布了新的文献求助10
24秒前
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得30
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
26秒前
令莞完成签到,获得积分10
27秒前
星星轨迹发布了新的文献求助10
27秒前
张文懿发布了新的文献求助10
28秒前
不解释发布了新的文献求助10
28秒前
阿呆盘阿瓜完成签到,获得积分10
30秒前
传奇3应助冷静无心采纳,获得10
30秒前
zfihead发布了新的文献求助10
31秒前
33秒前
自然的清涟应助一一采纳,获得10
34秒前
35秒前
幽默乐菱关注了科研通微信公众号
37秒前
张文懿完成签到,获得积分10
38秒前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346204
关于积分的说明 10328503
捐赠科研通 3062675
什么是DOI,文献DOI怎么找? 1681117
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646