Identification of a novel glycolysis-related gene signature for predicting the survival of patients with colon adenocarcinoma

生存分析 结直肠癌 基因签名 内科学 癌症研究 医学 基因表达谱 糖酵解 腺癌 生物 肿瘤科 癌症 基因表达 基因 比例危险模型 遗传学 内分泌学 新陈代谢
作者
Kezhen Yi,Jiangquan Wu,Xuan Tang,Qian Zhang,Bi‐Cheng Wang,Xinghuan Wang
出处
期刊:Scandinavian Journal of Gastroenterology [Taylor & Francis]
卷期号:57 (2): 214-221 被引量:3
标识
DOI:10.1080/00365521.2021.1989026
摘要

The most frequent histologic subtype of colon cancer is colon adenocarcinoma (COAD). A major problem in the diagnosis and treatment of COAD is that there is lack of new biomarkers to indicate the early stage of COAD. Compared with normally differentiated cells, the glycolytic pathways of tumor cells are more active, thus making them more adaptable to the hypoxic environment of solid tumors, which is known as the Warburg effect. Therefore, establishing a diagnostic and prognostic model based on glycolysis-related genes may provide guidance for the precise treatment of colon cancer.The Cancer Genome Atlas (TCGA) mRNA data were used to identify differentially expressed genes (DEGs). The glycolysis-related DEGs were identified using Gene Set Enrichment Analysis (GSEA) with HALLMARK gene sets. Combined with clinical data, we identified prognostic genes in glycolysis-related DEGs based on Cox regression analysis. Four glycolysis-related genes were identified and a predictive model was developed using univariate and multivariate Cox regression analysis. cBioPortal investigated the chromosomal variations of these genes. Following that, survival analysis and receiver operating characteristic (ROC) curve validation were carried out. The correlations between glycolysis-related gene signatures and molecular features and cancer subtypes were analyzed.We discovered five genes (SPAG4, P4HA1, STC2, ENO3, and GPC1) that are associated with COAD patients' prognosis. The risk score was more accurate in predicting prognosis when based on this gene signature in COAD patients. Furthermore, multivariate Cox regression analysis demonstrated that the glycolysis-related gene signature's predictive value was independent of clinical variables.We identified a glycolysis-related five-gene signature and developed a risk staging model potentially valuable for the clinical management of COAD patients. Our results suggest that prognostic markers based on glycolysis-related genes may be a reliable predictive tool for the prognosis of COAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daidai完成签到,获得积分10
刚刚
笔墨留香完成签到,获得积分10
2秒前
3秒前
3秒前
Jacqueline完成签到,获得积分10
4秒前
刻苦小丸子完成签到,获得积分10
9秒前
丘比特应助Yuanyuan采纳,获得10
9秒前
华仔应助天天采纳,获得10
10秒前
Lucas应助天天采纳,获得10
10秒前
MING应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
烟花应助科研通管家采纳,获得10
15秒前
Wonderland完成签到,获得积分10
15秒前
万寿宫人发布了新的文献求助30
16秒前
嘻嘻发布了新的文献求助10
16秒前
young_lifestyle完成签到,获得积分10
19秒前
酷波er应助UGO采纳,获得10
21秒前
大个应助Kimo采纳,获得10
22秒前
留白完成签到,获得积分10
23秒前
清风发布了新的文献求助10
25秒前
张贵虎发布了新的文献求助10
26秒前
26秒前
墨暮尘尘完成签到,获得积分10
26秒前
Dream发布了新的文献求助10
28秒前
lxl98完成签到 ,获得积分10
28秒前
jiejie完成签到,获得积分10
32秒前
科研通AI2S应助苗浩阳采纳,获得10
33秒前
SciGPT应助jing采纳,获得10
33秒前
奶皮七七发布了新的文献求助10
34秒前
pw关闭了pw文献求助
35秒前
ly1完成签到,获得积分10
39秒前
小小酥完成签到 ,获得积分10
42秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333317
求助须知:如何正确求助?哪些是违规求助? 3845079
关于积分的说明 12010711
捐赠科研通 3485650
什么是DOI,文献DOI怎么找? 1913339
邀请新用户注册赠送积分活动 956497
科研通“疑难数据库(出版商)”最低求助积分说明 857259