已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Intra-peritumoral Textural Transition Analysis based on Dynamic Contrast-enhanced Magnetic Resonance Imaging

乳腺癌 医学 磁共振成像 动态对比度 无线电技术 淋巴结 放射科 支持向量机 淋巴结转移 特征(语言学) 特征选择 转移 癌症 计算机科学 人工智能 病理 内科学 哲学 语言学
作者
Chenao Zhan,Yiqi Hu,Xinrong Wang,Huan Liu,Liming Xia,Tao Ai
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S107-S115 被引量:18
标识
DOI:10.1016/j.acra.2021.02.008
摘要

Intra-peritumoural textural transition (Ipris) is a new radiomics method, which includes a series of quantitative measurements of the image features that represent the differences between the inside and outside of the tumour. This study aimed to explore the feasibility of Ipris analysis for the preoperative prediction of axillary lymph node (ALN) status in patients with breast cancer based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).This study was approved by the Institutional Review Board (IRB) of our hospital. One hundred sixty-six patients with clinicopathologically confirmed invasive breast cancer and ALN status were enrolled. All patients underwent preoperative breast DCE-MRI examinations. The primary breast lesion was manually segmented using the ITK-SNAP software for each patient. Two sets of image features were extracted, including Ipris features and conventional intratumoural features. Feature selection was conducted using Spearman correlation analysis and support vector machine with recursive feature elimination (SVM-RFE). Next, three models were established in training dataset: Model 1 was established by Ipris features; Model 2 was established by intratumoural features; Model 3 was established by combining Ipris features and intratumoural features. The performances of the three models were evaluated for the prediction of ALN status in testing datasets.Model 1 with four Ipris features achieved an AUC of 0.816 (95% CI, 0.733-0.883) and 0.829 (95% CI, 0.695-0.922) in the training and testing datasets, respectively. Model 2 with six intratumoural features achieved an AUC of 0.801 (95% CI, 0.716-0.870) and 0.824 (95% CI, 0.689-0.918) in the training and testing datasets, respectively. By incorporating the Ipris and intratumoural features, the AUC of Model 3 increased to 0.968 (95% CI, 0.916-0.992) and 0.855 (95% CI, 0.724-0.939) in the training and testing datasets, respectively.Ipris features based on DCE-MRI can be used to predict ALN status in patients with breast cancer. The model combining intratumoural and Ipris features achieved higher prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlp鹏完成签到,获得积分10
1秒前
李卓如发布了新的文献求助10
3秒前
卫邴ken完成签到 ,获得积分10
5秒前
木木发布了新的文献求助10
5秒前
孟喵喵喵完成签到,获得积分10
8秒前
Lucas应助阿柱哥采纳,获得10
8秒前
冒如怿发布了新的文献求助10
10秒前
木木完成签到,获得积分10
13秒前
14秒前
Taegu完成签到,获得积分10
14秒前
优秀的耳机完成签到,获得积分10
15秒前
单车完成签到,获得积分10
17秒前
17秒前
monned发布了新的文献求助10
21秒前
SciGPT应助Taegu采纳,获得10
22秒前
shy发布了新的文献求助10
22秒前
阿柱哥发布了新的文献求助10
23秒前
27秒前
整齐的心锁应助岚风玉采纳,获得10
28秒前
29秒前
lululu完成签到 ,获得积分10
30秒前
阿柱哥完成签到,获得积分10
30秒前
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得50
30秒前
31秒前
ccm应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
BowieHuang应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
panda发布了新的文献求助10
31秒前
科研通AI2S应助chemj采纳,获得10
34秒前
流香完成签到 ,获得积分10
35秒前
BowieHuang应助文艺的从寒采纳,获得10
35秒前
38秒前
123完成签到,获得积分20
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542713
求助须知:如何正确求助?哪些是违规求助? 4628923
关于积分的说明 14610300
捐赠科研通 4570087
什么是DOI,文献DOI怎么找? 2505599
邀请新用户注册赠送积分活动 1482928
关于科研通互助平台的介绍 1454289